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Preface

This book provides a fundamental introduction to numerical analysis suitable for un-
dergraduate students in mathematics, computer science, physical sciences, and engi-
neering. It is assumed that the reader is familiar with calculus and has taken a struc-
tured programming course. The text has enough material fitted modularly for either a
single-term course or a year sequence. In short, the book contains enough material so
instructors will be able to select topics appropriate to their needs.

Students of various backgrounds should find numerical methods quite interesting
and useful, and this is kept in mind throughout the book. Thus, there is a wide vari-
ety of examples and problems that help to sharpen one’s skill in both the theory and
practice of numerical analysis. Computer calculations are presented in the form of ta-
bles and graphs whenever possible so that the resulting numerical approximations are
easier to visualize and interpret. MATLAB programs are the vehicle for presenting the
underlying numerical algorithms. '

Emphasis is placed on understanding why numerical methods work and their lim-
itations. This is challenging and involves a balance between theory, error analysis,
and readability. An error analysis for each method is presented in a fashion that is
appropriate for the method at hand, yet does not turn off the reader. A mathematical
derivation for each method is given that uses elementary results and builds the student’s
understanding of calculus. Computer assignments using MATLAB give students an
opportunity to practice their skills at scientific programming.

Shorter numerical exercises can be carried out with a pocket calculator/computer.
and the longer ones can be done using MATLAB subroutines. It is left for the instruc-
tor to guide the students regarding the pedagogical use of numerical computations.
Each instructor can make assignments that are appropriate to the available comput-
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viii PREFACE

ing resources. Experimentation with the MATLAB subroutine libraries is encouraged.
These materials can be used to assist students in the completion of the numerical anal-
ysis component of computer laboratory exercises.

This Third Edition grows out of much polishing of the narrative for the Second
Edition. For example, the O R method has been added to the chapter on Eigenvalues
and Eigenvectors. New to this edition is the explicit use of the software MATLAB.
An appendix gives an introduction to MATLAB syntax. Examples have been added
throughout the text with MATLAB and complete MATLAB programs are given in
each section. An instructor’s disk is available upon request from the publisher.

Previously we took the attitude that any software program that students mastered
would work fine. However, many students entering this course have yet to master a
programming language (computer science students excepted). MATLAB has become
the tool of nearly all engineers and applied mathematicians, and its newest versions

- -have improved the programming aspects. So we think that students will have an easier

and more productive time in this MATLAB version of our text.
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Preliminaries

Consider the function f(x) = cos(x), its derivative f'(x) = —sin(x), and its an-
tiderivative F(x) = sin(x) + C. These formulas were studied in calculus. The former
is used to determine the slope m = f'(xg) of the curve y = f(x) ata point (xg, f(xp)).
and the latter is used to compute the area under the curve fora < x < b.

The slope at the point (7/2,0) is m = f'(7w/2) = —1 and can be used to find the
tangent line at this point (see Figure 1.1(a)):

(=)0 £ (5) (- B = e T

y

Figure 1.1 (2) The tangent line to
the curve v = cos(x) at the point
(:1/2. 0.
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2 CHAP. 1 PRELIMINARIES

Figure 1.1 (b) The area under the
curve y = cos(x) over the interval
[0, 7 /2].

The area under the curve for 0 < x < m/2 is computed using an integral (see Fig-
ure 1.1(b)):

area = [OH/Z cos(x)dx = F (%) — F(0) = sin (%) —0=1

These are some of the results that we will need to use from calculus.

Review of Calculus

It is assumed that the reader is familiar with the notation and subject matter covered in
the undergraduate calculus sequence. This should have included the topics of limits,
continuity, differentiation, integration, sequences, and series. Throughout the book we
refer to the following results. '

Limits and Continuity

Definition 1.1. Assume that f(x) is defined on a set S of real numbers. Then f is
said to have the limit L at x = xg, and we write

(1) lim f(x)=L,

X=>X()

if, given any ¢ > (. there exists a § > 0 such that, wheneverx € §,0 < [x —xp| < 6
implies that | f(x) — L| < €. When the h-increment notation x = xg -+ /1 is used.
equation (1) becomes

(2) lim f(xo+h)=L.
h—0
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Definition 1.2.  Assume that f(x)is defined on a set § of real numbers and let xy € S.
Then f is said to be continuous at x = xg if

(3) lim f(x)= flxy).

X=X

The function f is said to be continuous on S if it is continuous at each point x &€ S.
The notation C"($) stands for the set of all functions f such that f and its first n
derivatives are continuous on §. When § is an interval, say [a, b], then the notation

C"{a, b] is used. As an example, consider the function f(x) = x*3 on the inter-
val [—1, 1]. Clearly, f(x) and f'(x) = (4/3)x1/3 are continuous on [—1, 1], while
F7(x) = (4/9)x /3 is not continuous at x = 0. A

Definition 1.3. Suppose that {x,}°2, is an-infinite sequence. Then the sequence is
said to have the limit L, and we write

4) lim x, =L,

n—>oQ
if, given any € > 0, there exists a positive integer N = N (¢) such that n > N implies
that |x, — L| < €. A

When a sequence has a limit, we say that it is a convergent sequence. Another
commonly used notation is “x, — L as n ~ co.” Equation (4) is equivalent to

(5) lim (x; — L) = 0.
n—-0o0

Thus we can view the sequence {e,,})f":1 = {x, — L}ff’:I as an error sequence. The
following theorem relates the concepts of continuity and convergent sequence.

Theorem lal Assume that f(x) is defined on the set S andrxo € S. The following
statements are equivalent:

(a) The function f is continuous at xp.

© (0T lim x, = xp, then lim F(xy) = f(x0).
n—oo . n—oo
Theorem 1.2 (Intermediate Value Theorem). Assume that f € Cla, ] and L is

any number between f(a) and f(b). Then there exists a number ¢, with ¢ € (a, b),
such that f(c) = L.

Example 1.1. The function f(x) = cos(x — 1) is continuous over {0, 1}, and the constant
L = 0.8 € (cos(0), cos(1)). The sotution to f(x) = 0.8 over [0, 1] is ¢; = 0.356499.
Similarly, f(x) is continuous over [1, 2.5],and L = 0.8 € (co0s(2.3), cos(1)). The solution
to f(x) = 0.8 over[l,2.5]is ¢ = 1.643502. These two cases are shown in Figure 1.2. m
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)7
y = f(x)
1.or
/—\ y _ L
0.8
: :
g ;
0.4 i .
0.2¢ E % Figure 1.2 The intermediate value
! ! theorem applied to the function
0.0 e } X f(x) = cos(x ~ 1) over {0, 1] and
0.5 1.0 156 2.0 25 over the interval [1, 2.5].
NN IEN))

{a, fla)) y = f(x)

(b, f(b)

20
10 Figure 1.3 The extreme value
] theorem applied to the function
- - - - ; — X f(x) =354 359.5x — 66.5x% + 15x3
0.0 0.5 1.0 1.5 2.0 2.5 30 over the interval [0’ 3]

Theorem 1.3 (Extreme Value Theorem for a Continuous Function). Assume that
f € Cla, b]. Then there exists a lower bound M;, an upper bound M», and two
numbers x1, X7 € [a, b} such that

(N My = f(x)) = f(x) < f(x2) = M2  whenever x € [a, b].
We sometimes express this by writing

) M= flo)= min (f)  and M= fl) = max (f(0):

a<x<h

Differentiable Functions

Definition 1.4,  Assume that f(x) is defined on an open interval containing xy. Then
[ is said to be differentiable at xq if

. X)) — fx
%) i J(x) = [(x0)

XA X — Xy
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exists. When this limit exists, it is denoted by f’(xq) and is called the derivative of f
at xg. An equivalent way to express this limit is to use the A-increment notation:

; hy — F(
(10) fim flxo+h)— flxp)
h—0 h

= f,(-f())-

A function that has a derivative at each point in a set S is said to be differentiable
on S. Note that, the number m = f'(xy) is the slope of the tangent line to the graph of
the function y = f(x) at the point (xp, f(x0)). A

Theorem 1.4. If f(x) is differentiable at x = xg, then f(x) is continuous at x = xq.

It follows from Theorem 1.3 that, if a function f is differentiable on a closed
interval [a, b], then its extreme values occur at the end points of the interval or at the
critical points (solutions of f'(x) = 0) in the open interval (a, b). -

Example 1.2. The function f(x) = 15x> —66.5x>+359.5x 435 is differentiable on [0, 3].
The solutions to f'(x) = 45x2 — 123x 4+ 59.5 = 0 are x; = 0.34955 and x» = 2.40601.
The maximum and minimum values of fon{0,3] are:

minf f(0), f(3), f(x1), f(x2)} = min{35, 20, 50.10438, 2.11850} = 2.11850

and

max{ £(0), f(3), f(x1), f(x2)} = max{35, 20, 50.10438, 2.11850} = 50.10438. m

Theorem 1.5 (Rolie’s Theorem). Assume that f € Cla, b] and that f'(x) exists for
all x € (a, ). If f(a) = f(b) =0, then there exists a number ¢, with ¢ € (a, b), such
that f'(c) = 0.

Theorem 1.6 (Mean Value Theorem). Assume that f € C[a, ] and that f'(x)
exists for all x € (a, b). Then there exists a number ¢, with ¢ € (a, b), such that

fb) - fa)
L
Geometrically, the Mean Value Theorem says that there is at least one number

¢ € (a, b) such that the slope of the tangent line to the graph of y = f(x) at the point
(¢, f(c)) equals the slope of the secant line through the points (a, f(a)) and (b, f(b)).

(1D fllo=

Example 1.3. The function f(x) = sin{x) is continuous on the closed interval [0.1, 2.1]

and differentiable on the open interval (0.1, 2.1). Thus, by the Mean Value Theorem, there

1s a number ¢ such that

S22y~ f(0.1) 0.863209 — 0.099833
21-01 21-01

The solution to f'(¢) = cos(¢) = 0.381688 in the interval (0.1,2.1) is ¢ = 1.179174.

The graphs of f(x), the secant line v = 0.381688x + 0.099833. and the tangent line
v = 0.381688x + 0.474215 are shown in Figure 1.4. n

fle) = = 0.381688.
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-

' m=f'(c)

1.0 (c, fe))
f(b)

-

-

LN N 1))
0.5

“a, fla))
[ [} 1 i 1 i i
a 0.5 1.0 ¢ 1.5 206

f(a){

X

Figure 1.4 The mean value theorem applied to f(x) =
sin(x) over the interval [0.1, 2.1].

Theorem 1.7 (Generalized Rolle’s Theorem). Assume that f € Cla, b] and that
£, frx). ..., f(x) exist over (a, b) and xp, x1, ..., x, € [a, b]. If f(x;) =0
for j =0,1,...,n. then there exists anumber ¢, with ¢ € (a, b), such that W (c) = 0.

Integrals

Theorem 1.8 (First Fundamental Theorem). If f is continuous over [a, &] and F
is any antiderivative of fon [a, 5], then

b
(12) / f(x)dx = F(b) — F(a) where F'(x) = f(x).

Theorem 1.9 (Second Fundamental Theorem). If f is continuous over [a, b] and
x € (a, b), then

d X
(13) T/ f)rde = f(x).
X Ja

Example 1.4. The function f(x) = cos(x) satisfies the hypotheses of Theorem 1.9 over
the interval [0, /2], thus by the chain rule

LZ A: b 2., a
— cos(t) dt = cos{x™)(x") = 2x cos(x~}. n
dx 0

Theorem 1.10 (Mean Value Theorem for Integrals). Assume that /1 € Cla, bl

Then there exists a number ¢, with ¢ € (a, b), such that

| h

Jl)dx = fc).

b—al,

The value f(c) is the average value of [ over the interval {a, b].
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v = flo
0.8 - /\ /
\_/
0.6 -
0.4 4
0.2 7 Figure 1.5 The mean value
theorem for integrals applied to
0.0 . r - —— X f(x) =sin(x) + % sin(3x) over the
0.0 0.5 1.0 1.5 2.0 2.5 interval [0, 2.5].

Example 1.5. The function f(x) = sin(x) + % sin(3x) satisfies the hypotheses of The-
orem 1.10 over the interval [0, 2.5]. An antiderivative of f(x) is F(x) = —cos(x) —
é cos(3x). The average value of the function f(x) over the interval [0, 2.5] is:

1 25 F(2.5) = F(0) 0.762629 — (—=1.111111)
35 o), W= 25 =
2.0 — 0 LD 2.5
_ 1.873740
25

There are three solutions to the equation f(c¢) = 0.749496 over the interval [0, 2.5]:
cy = 0.440566, ¢ = 1.268010, and c3 = 1.873583. The area of the rectangle with
base b —a = 2.5 and height f(c;) = 0.749496 is f(c;)(b — a) = 1.873740. The area
of the rectangle has the same numericai value as the integral of f(x) taken over the inter-
val [0, 2.5]. A comparison of the area under the curve y = f(x) and that of the rectangle
can be seen in Figure 1.5. ’ n

= 0.749496.

Theorem 1.11 (Weighted Integral Mean Value Theorem). Assume that f, g €
Cla, b] and g(x) > O for x € [a, b]. Then there exists a number ¢, with ¢ € (a, b),
such that

b b
(14) / f(x)g(x)dx:f(c)f g(x)dx.

Example 1.6. The functions f(x) = sin(x) and g(x) = x? satisfy the hypotheses of
Theorem 1.11 over the interval [0, r/2]. Thus there exists a number ¢ such that

/2 2 . -
x~sin(x) da 1.14159

sin() = Do ¥ s dx Z —0.883631
2 g 129193

or ¢ = sin”!(0.883631) = 1.08356. n
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Series

Definition 1.5. Let {a,}52 , be a sequence. Then Zﬁil ay 1s an infinite series. The

nth partial sum is S, = Y ;_;ax. The infinite series converges if and only if the

sequence {5,]52 | converges to a limit S, that is,

n
(15) lim Sy = lim Y @ =S.
n—o0 n—>0Q0
k=1
If a series does not converge, we say that it diverges. A

1 > e
Example 1.7.  Consider the infinite sequence {a,},2, = {——1} . Then the nth
partial sum is nn+1)

n=1

n o1 1 1
Si=Y — = ) =1 ,
Z1<(/<+1) Z(k k—l—l) n+1

k=1 k=1

_ Therefore, the sum of the infinite series is

-
S:IimSn:Iim(l—— ):1. l

n—>o0o - n—oc n-1

Theorem 1.12 (Taylor’s Theorem). Assume that f € C""l{a, b] and let xq &
[a, b]. Then, for every x € (a, b), there exists a number ¢ = c(x) (the value of ¢
depends on the value of x) that lies between xg and x such that

(16) Fx) = Py(x) + Ry (x),
where
(7 Pu(x) :_Z ;_T—(X—__—_xo)
' =0 N
and
(n+1)y .
(18) Ry(x) = —~—}; T ](:,)(,\‘ —xg)'
n !

Example 1.8.  The function f(x) = sin(x) satisties the hypotheses of Theorem 1.12. The
Taylor polynomial P, (x) of degree n = 9 expanded about xy = 0 is obtained by evaluating
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v = Plx)

Figure 1.6 The graph of f(x) = sin(x) and the Taylor
polynomial P(x) = x — x> /3! + x°/3! — x7 /70 + 27 /9!,

the following derivatives at x = 0 and substituting the numerical values into formula (17).

S (x) = sin(x), £(0) =0,

F(x) = cos(x), 70 =1,

f"(x) = —sin(x), £7(0) =0,
fOu) = —cos(x), 0 =-1,

FOx) = cos(x), 90 =1,

3 X &

P9(.‘c):x—§!-+‘§!-—:ﬂ+a.

A graph of both f and Py over the interval [0, 2:7] is shown in Figure 1.6. u

Corollary 1.1. If P,(x) is the Taylor polynomial of degree n given in Theorem 1.12,
then

(19) PP (xg) = fRxg) for k=0, 1,..., n

Evaluation of a Polynomial

Let the polynomial P(x) of degree i have the form

20 P(x)=a,x" + poy XV b aaxT +arx + ag.



