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Introduction

This book is intended as a systematic, self-contained, and straightforward introduc-
tion to a substantial part of the theory of holomorphic Hilbert modular forms,
associated L-functions, and especially their arithmetic. As such, it is an introduction
to the theory of automorphic forms in general, especially the arithmetic of holo-
morphic automorphic forms. Beginning from the most standard algebraic number
theory and function theory, one can develop matters far enough to recover some of
Shimura’s results on special values of L-functions attached to Hilbert modular
forms. Also within reach are the theorem on special values of L-functions of totally
real number fields (after Klingen), and examples of results on special values of certain
grossencharacter L-functions (due to Damerell over @ and to Shimura in general).

One of many reasons for the study of Hilbert modular forms is for applications
to Dirichlet series. One emphasis of this book is the construction of Dirichlet series

D(s)= ) c,/n*

n>1

which have analytic continuations and functional equations. Many such are ob-
tained as (Mellin) :ntegral transforms of holomorphic Hilbert modular forms: the
analytic continuations and functional equations follow almost immediately from
the properties of such modular forms. Further, the existence of an Euler product
factorization

Dis)= [] 1/P,(p™)

p prime

(where P, is a polynomial) of a Dirichlet serics arising from a modular form f is
essentially equivalent to properties of f: f should be an eigenfunction for certain
operators (the Hecke operators) on automorphic forms. s

The first three chapters bear upon such matters. A considerably subtler issue
is the determination of the nature of the values of such Dirichlet series D(s) at special
integers s. Some samples of resuits in this direction are given in sections 6.2-6.5.
The discussion of the arithmetic of the special values of these Dirichlet series relies
profoundly upon arithmetic properties of modular forms themselves.
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It is possible to give a reasonably full account of these special-values results
by virtue of new direct proofs (chapter 7) of a theorem (stated,in\6.1) of which all
these special values results are corollaries. One half of this theorem is part of a result
of Shimura concerning the arithmetic properties of Fourier coefficients of Hilbert
modular forms. The other half is an apparentiy new comparison of inner products
of cuspforms, that allows an omission of some delicate matters concerning Hecke
operators.

In the first five chapters I have attempted to collect in one place fundamental
ideas and methods that arose during the period 1904-1961. The diffuseness of the
literature and the desirability of illustrating the efficacy of “modern methods” I have
taken as justification of this reprise. Chapters 6 and 7 bear upon more recent (and
more arithmetic) developments. All but the method of 7.9-7.10 and the choice of
presentation must be attributed to many other authors—notably, Blumenthal,
Hecke, Siegel, Maass, Rankin, Klingen, Shimura, and Selberg,

There is no presumption of familiarity with the theory of elliptic functions and
elliptic modular forms, (although some experience might prove helpful). Indeed, the
beautiful but very special ideas and calculations arising from the theory of elliptic
functions may not be the best paradigm for general expectations: there is no
convenient generalization of the Weierstrass P-function. There are even more
mundane coincidences that are implicitly exploited in the classical theory of elliptic
modular forms; for example, that the rational integers are a Euclidean (hence
principal) domain. But, as it turns out there is no genuine need to depend on such
fortuitous coincidences, and because the general situation is important in its own
right, I have tried to give a portrayal of Hilbert modular forms that is essentially
blind to special features of the ground field. It is possible to do so coherently and
palatably by considering modular forms on adele groups.

Currently, it may seem that the theory of elliptic modular forms (that is,
Hilbert modular forms with ground-field Q) is most immediately relevant to other
parts of arithmetic. However, Klingen’s determination of the arithmetic nature of
the special values of L-functions of totally real number ficlds (see 6.2) is a pointed
example of the necessity and utility of more general considerations. Also, the
treatment here (6.3) of Damerell’s and Shimura’s results on grossencharacter L-
functions makes essential use of the arithmetic properties of Fourier coefficients of
Hilbert modular forms (due to Shimura). (See 6.1.) Further, the arguments of 6.3-6.5
rely upon comparisons of inner products of automorphic forms; 6.1 gives a new
result in this direction.

The new proof (Chapter 7), which yieids a part of Shimura’s theorem on the
arithmetic properties of the Fourier coefficients of Hilbert modular forms and gives
the comparison of inner products, suggests another breadening of perspective and
methods: the discernible arithmetic of vertain (Siegel’s) Eisenstein series or a larger
group (a symplectic group of rank 2) is the starting point of the proof. Thus, Siegel’s
already striking idea (in [Si2]) for understanding the arithmetic nature of the
Fourier coefficients of more general Eisenstein series becomes more significant.
Shimura’s original proof (in [Sh3]) of the theorem on Fourier coefficients depends
on a special case of his profound resuits (in [Sli1]) on canonical models of arithmetic
quotients, that in turn depend on quite serious results from algebraic geometry.
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While the method of 7.9 and 7.10 seems incapable of recovering Shimura’s theorems
on generation of class fields, it is profitable to see that the arithmetic nature of the
Fourier coefficients can be understood directly. Previous methods of comparison
of inner products of cuspforms relied essentially on the delicate notion of “newform”
(as in [M], [A], [C]); the idea here is less technical and is relevant in more general
situations as well.

Another point hopefully illustrated here is the central role of Eisenstein
series-—in Rankin’s integral representation of L-functions (4.10), in Shimura’s appli-
cations (6.3-6.5), and in the present proof of the theorem of 6.1 (Chapter 7).

The first chapter studies Hilbert modular forms from a “classical” viewpoint—
that is, as it would have been done prior to 1960. Siegel’s book [Sil] also gives an
introduction to this material. Most of this material merely imitates the thcory
of elliptic modular forms. An exception is the method of proof of the f{inite-
dimensionality of spaces of cuspforms in 1.7; this method is due to Siegel and Maass.
This method, applicable as well to elliptic modular forms, supplants the use in that
theory of either residues or the Riemann-Roch theorem, neither of which is as helpful
in general. Precise attribution of all historic sources is beyond my ability; the resulits
here are due to many authors, going back as far as Blumenthal’s pursuit of Hilbert’s
suggestion in 1904. Some of the more important sources are [B1], {B2], [Hi], [H2],
[H3], [KL1], [M], [P], and [Se]. With regard to some matters (Hecke operators
and L-functions) the treatment in this chapter is only introductory, as these topics
are best treated later in a different way. For the classical versions of these topics—
that is, where the base field is Q, one might consuit [Sh2] or [Gu].

The second chapter intreduces a general notion of automorphic form on
GL(2) over the adeles. The influential books [GGP] and [J1.] make the usefulness
of this viewpoint clear. This viewpoint makes any ground field tractable by uniform
methods. For example, a classical treatment of Hecke operators for congruence
subgroups over rings of integers not of narrow class number one is excruciatingly
technical and not very helpful; an adelic treatment supplants this approach bv a
discussion even simpler than consideration of Hecke operators for SL(2, 7). Further,
in this setting the Euler product expansion of Dirichlet series obtained as Mellin
transforms of modular forms arises as inexorably as in Tate’s thesis’s treatment of
L-functions of number f{ields (as in [La] or [CF]). In 2.7 some references to reccnt
developments regarding analytic continuation of higher L-functions are given.
Appendices A.1, 4.2, and A.4 give some relevant background cn integration theory
on homogeneous spaces, harmonic analysis on the adeles, and invariant differential
operators on SL(2, R).

Both for completeness and for clarity, the third chapter compares the classical
and adelic versions of these things. An essential ingredient is a Strong Approxima-
tion Theorem for SL(2); this theorem 1s proven in Appendix A.3, which specializes
and simplifies a proof found in [Kn]. Although it is not hard to give a quite
elementary proof over Q (for example, in Chapter 3 of [Sh2]), it is not easy to do
so over arbitrary number ficlds; the original references for the ideas involved in even
more general strong-approximation theorems are the papers [E1] and [E2]. 1 do
not go far in discussing Hecke operators at bad primes; for such a discussion, see
[A], [M], and [C].
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Chapter 4 is concerned with Eisenstein series. Consideration of analytic and
arithmetic properties of Eisenstein series goes back almost 200 years and is still
central to number theory and automorphic forms. Most of this chapter is a study
of the formal properties of Eisenstein series, which become even more transparent
in an adelic formulation. The method of proof of analytic continuation and
functional equation given in 4.2 reformulates an idea I first saw in Godement’s
exceptional article [Go]; perhaps the idea should be attributed to Maass and
Selberg in some form. This avoids direct consideration of confluent hypergeometric
functions and their p-adic analogues, although the latter have virtues of their own.
Section 4.10 is a mildly adelic version of a part of Rankin’s papers, [R1] and [R2].
(See also [P].) Although Rankin’s first paper on these matters appeared in the 1930’s,
the potential of the general idea is not yet exhausted. Sections 6.3-6.5 pursue the
arithmetic side of the idea {decisively illustrated in Shimura’s papers [Sh4], [Sh5],
and [Sh6]).

In Chapter S the treatment is again somewhat classical,.for a non-trivial
reason: theta series that are of half-integral weight cannot be considered as auto-
morphic forms on an adelic GL(2); indeed, the study of half-integral-weight auto-
morphic formsds a subject in its own right and is not pursued here. The main point
of this chapter is the proof that theta series are modular forms; the proof uses an
adelic version of the Poisson summation formula. Theta series have been studied
for a long time; some references are [B2], [KL2], and [Sc]. Theta series of integral
weight reappear in 6.3 in connection with grossencharacter-L-functions.

Chapter 6 discusses some developments since 1961. Section 6.1 states part of
a fundamental theorem of Shimura’s (from [Sh3]); the theorem concerns the arith-
metic properties of Fourier coefficients of Hilbert modular forms. I cannot believe
that this result was not known until 1975, considering that versions of this result
over Q@ were known before 1900 via the theory of elliptic functions. (Certainly the
other parts of the results of [Sh3], those regarding generation of class fields, could
not have been known earlier.) Also, the theorem stated in 6.1 contains an equally
important fact concerning comparison of inner products of cuspforms; this fact is
indispensable for applications. Section 6.2 recapitulates Klingen’s papers [K1] and
[K2]; that is, it combines the result of 6.1 over Q@ with 4.8’s calculation of Fourier
coefficients of Eisenstein series to determine the arithmetic nature of special values
of certain L-functions of totally real number fields. Sections 6.3-6.5 give a sub-
stantial class of examples of Shimura’s results on special values of L-functions
attached to Hilbert modular cuspforms ([Sh4], [Sh5], and [Sh6]). The results of
6.5 for ground-field Q were obtained in a different way in [D]. All these special-value
results fit into the general conjectural pattern enunciated in [De].

The last chapter is devoted to a new proof of a part of Shimura’s theorem (6.1)
on Fourier coefficients and to a proof of the comparison results concerning inner
products. Sections 7.1-7.8 follow Siegel’s idea (in [Si2]) to prove the rationality of
Fourier coefficients of some specific Eisenstein series on a symplectic group of rank
2. Such calculations can be done in much greater generality, as in [Sh7], for
example, Section 7.9, following the idea of [G 1], determines the restriction of this
Eisenstein series to an imbedded copy of SL(2) x SL(2), embodied in the “Main
Formula.” Section 7.10 combines these two items to obtain the theorem of 6.1.
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As complementary and supplementary reading, one mighi consult the books
[Sh2], [Sil1], [GGP], [JL], [Ge], and [Gu}. I have omitted many topics and
applications, most of which would have the subject matter of this volume as
prerequisite: algebraic geometry of Hilbert modular varieties. compactifications
of arithmetic quotients, moduli of abelian varieties, generation of class fields,
base change, non-holomorphic modular forms, half-integral-weight forms, converse
theorems, representation theory, trace formulas, Kronecker limit formulas, con-
gruence properties of modular forms, application to Hasse-Weil zeta functions,
Siegel-Weil formulas, theta correspondences, triple-product L-funciions, ... .

I find it interesting to trace the arguments used here to obtain the rationality
results. The arithmetic of Dirichlet L-functions over @ is quite old; in appendix A.5
the results are proven by residues and by the classical Poisson summation formula.
From this result, following Siegel in 7.1-7.8 and using the method of 7.9-7.10,
Shimura’s theorem of 6.1 over I is obtained, as is the comparison of inner products.
Then from this result, following Klingen in 6.2, the special-values result for L-
functions over totally real number fields is obtained. From this result in turn,
7.1-7.10 yield the theorem of 6.1 over arbitrary totally real number fields. Finally
from this result, the results of 6.3--6.5 foliow by Shimura’s arithmetic application of
Rankin’s method. I take the viewpoint that all these arguments have the effect of
reducing rationality questions to questions about Dirichlet L-functions over Q: no
new numbers are approached from first principles; rather, every step is a reduction.
Diagramatically:

Dirichlet L-functions cver @ (A.5) Siegel’s method (7.1-7.8)
, N U
rationality of Fourier coefficients of Siegel’s Eisenstein series over Q
the Main Formula (7.9), methods of 7.10 ﬁ
Y
rationality properties for GL(2, @) (6.1 over Q)
Y
Eisenstein series Fourier expansion (4.8) ﬁ
Y
Klingen's method (6.2) A ﬂ
5 \h \
y
special values of Dirichlet L-functions over totally real number
fields (6.2) 3
Siegel's method (7.1-7.8) ﬁ
A J
rationality of Fourier coefficients of Siegel's Eisenstein series over totally
real fields ﬁ
the Main Formula (7.9), methods of 7.10 :

Y
rationality properties for GL(2) over totally real fields (6.1)
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Rankin-Shimura method (4.10, 6.3--6.5) ﬁ
A y
special values of grossencharacter L-functions over totally imaginary
quadratic extensions of totally real number fields,
special values of standard L-functions and convolution L-functions for
GL(2) .

If one views the theory of Hilbert modular forms as but the second example
(after elliptic modular forms) of much more general phenomena, then distilling the
facts and finding the most economical viewpoint becomes important: a long voyage
with heavy baggage is unpleasant. Partly for this reason, I have attempted to be
conservative in choosing what to include: almost everything in this book is indis-
pensable for getting to the results of Chapter 6. The new methods of 7.9-7.10 allow
all these matters to fit into one volume, most of which is prerequisite for a reascnable
understanding of further developments in the subject.

Given the modest prerequisites, this book ought to be accessible to graduate
students and non-specialists. I also hope that it will be useful as a handbook of some
standard methods in the subject.

I was introduced to this subject through Shimura’s lectures at Princeton
University from 1975 to 1977. The text is a rewriting of parts of courses and lectures
I have given at the University of Minnesota from 1982 to 1988. While almost all
these results can be found somewhere in the literature, the precise form of this text
is the result of my own reflections upon the subject; therefore, 1 take responsibility
for any imbalances, unwarranted omissions, or misatiributious. The bibliography
is not aimed at exhaustiveness, either in historical references or in references to
current literature; such an attempt would serve no purpose. In any case, my aim
has been to make the present trcatment sufficiently self-contained so that it can be
read fruitfully without too many auxiliary references.

The author would like to thank Professor V. Kumar Murty, University of
Toronto, for his helpful suggestions in reviewing the manuscript.

This work was partially supported by a grant from the National Science
Foundation.

Paul Garrett
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Classical Theory of Hilbert
Modular Forms

This first chapter develops most of the significant classical features of holomorphic
Hilbert modular forms. Some aspects are different from the theory of elliptic
modular forms. For example, K oecher’s principle 1.4 holds only for fields other than
Q. On the other hand, some results from the theory of Riemann surfaces (for
example, the Riemann-Hurwitz formula and the Riemann-Roch theorem) are no
longer available in as usable a form, so other methods are required.

The first two sections are mainly definitions, with a few very easy lemmas. The
third section is the first illustration of a novelty: The number of cusps “at level one”
is the class number of the ring of integers of the field involved. Section 1.4 shows
another novelty: Over fields larger than Q, there is no need to impose growth
conditions or Fourier coefficient conditions on holomorphic Hilbert modular
forms, unlike the case of elliptic modular forms. Section 1.5 returns to some exam-
ples which very much resemble the elliptic modular case: holomorphic Eisenstein
series of level one.

The next section, on Siegel sets, is a simple example of a very general phe-
nomenon: It is not practical to determine a precise fundamental domain for the
action of Hilbert modular groups on products of upper half-planes, but it is possible
to determine in qualitatively simpie terms a superset of a fundamental domain.
Indeed, one may easily find examples of exact fundamental domains which are
polyhedral but require a very large number of faces. Section 1.7 then provides an
illustration of the fact that this approximation of a fundamental domain suffices for
many purposes; the purpose at hand is to give a functior-theoretic (rather than
algebro-geometric) proof of the finite dimensionality of spaces of cuspforms (due to
Siegel and Maass). Along the way we obtain some useful estimates on the asymptotic
behavior of cuspforms and their Fourier coefficients. The next section shows that
the space spanned by Eisenstein series is a complement (in the space of all Hilbert
modular forms) to the space of cuspforms.

The two sections on Dirichlet series and Hecke operators associated to
cuspforms are actually only first approximations; in this classical setting there are
various complications arising from class numbers and units. These complications
may best be eliminated by adopting an adelic viewpoint, which we do later.
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To integrate functions on a quotient space, without having an explicit funda-
mental domain, requires some preparatory consideration of integration theory.
This in hand, we compute the volume of the quotients (assuming class number one)
in a quite amusing manner (after Siegel). Then the Petersson inner product on spaces
of cuspforms can be defined, and properties of the Poincare series considered. In
this setting we also have a reproducing kernel for cuspforms of a fixed level and
weight (studied by Petersson and Selberg).

1.1 The Hilbert Modular Group

Here we define the Hilbert modular groups and certain subgroups, and examine
the elementary aspects of the action of these groups on products of complex upper
half-planes.

Let GL™(2,R) be the collection of elements of GL(2, R) with positive deter-
minant, where GL(2, R) is the group of invertible two-by-two real matrices. The
group GL"(2,R) acts on the upper complex half-plane $ by linear fractional
transformations:

a b
< )(:) = (az + b)/(cz + d).

c d
The center of GL™(2, R) acts trivially. It is important to note that
Im(gz) = (detg) Im(z)/|cz + d|>.

The isotropy group in
SL(2,R) = {ge GL(2,R): detg = 1}

of the point i € § is the special orthogonal group
50(2) = {g € SL(2,R): g"g = 1,},

and the action of SL(2, R) on $ is transitive. Letting Z be the center of GL*(2, R
.SO(2)Z is the isotropy group of i € $ in GL*(2, R).
Let F be a totally real number field of degree m over Q, with ring of integer:
o. Leta,,..., g, be the real imbeddings of F; fix an ordering of them. Via the g; we
have m imbeddings of GL(2, F) into GL(2, R), componentwise; together, we obtai
an imbedding of GL(2, F) into GL(2, R)". The image of GL(2,0) in GL(2, R)™ is disq
crete, since the image of o in R™ (via o4, ..., 6,,) is discrete, and GL(2,0) €« M(2,0) =
o* is discrete in M(2, R)™ ~ (R™)*. Let GL*(2, F) (respectively, GL*(2,0)) be the
collection of elements of GL(2, F) (respectively, GL(2, o)) with totally positive deter-
minant. We have an action z — gz of elements g of GL*(2, R)™ on z € $™ component-
“ wise, and an action of GL*(2,0) on $™ by our choice of ordering of the real
imbeddings of F. This group GL*(2,0) is the full Hilbert modular group (attached
to the field F).
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Definition For a non-zero ideal n of o, let
I'(n)={ye GL"(2,0): y = 1, modulo n}.

This is the principal congruence subgroup of ievel n. Let Z(o) be the center of
GL7(2,0). Any subgroup ' of GL*(2, F) so that Z{o)I" contains some I['(n) with finite
index is a congruence subgroup (of GL* (2, F)).

PROPOSITION Let [" and I', be congruence subgroups.

i. Then I' ()T is also a congruence subgroup and is of finite index in both [” and
rz.
ii. Forge GL(2,F),glg™" is a congruence subgroup.
iii. SL(2,0)is a congruence subgroup.
iv. There is a congruence subgroup I'(n) which is a normal subgroup of Z(o)T".

Proof All these assertions are easy exercises. a2

Remarks In the literature, there is an ambiguity about the definition of the
principal corgruence subgroups and some other special types of congruence sub-
groups. As we have defined them, they are subgroups of GL*(2, o), satisfying some
congruence properties. Sometimes they are defined as subgroups of SL(2, o), satisfy-
ing congruence properties. (Since there is no distinction for F = Q, there is no
ambiguity for elliptic modular forms). This ambiguity is essentially harmless, except
for engendering commensurate ambiguities in certain subsequent definitions.

1.2 Hilbert Modular Forms
Forg=(® % eGL*(2,R)and z €, put

u(g,z) = detg™"?(cz + d).

Forg =(9;,...,9m) € GL*(2,R)"and z = (z,,...,2,) € h™ and lor k = (k,,...,k,,) €
Z™, we use a standard multi-index notation gnd write

u(g, 2= n #(gj, Zj)kj-

j=1,...,
D_eﬁnition Let f be a function on 9™, let ge GL*(2,R)", let ze H™, and let
k= (ky,...,k,) € Z™ Then define

(f1x9)(2) = f(g(2))u(g,2)7"

Definition Let I' be a congruence subgroup, k€ Z™. Let x:I' = C* be a group
homomorphism so that x(I') is a finite group. The space of weak Hilbert modular
Jorms of weight k for T with character y is
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WIm(I, k, ) = { f holomorphic function on $™ f|,7 = x(y)f for aliy e T'}
With y the trivial character, we write

Wim(I", &} = { f holomorphic function on §™: f|,7 = fforall ye I'}.

Wimik) = ) Wem(I™, k)

congruence subgroups I”

denote the space of all weak holomorphic Hilbert modular forms of weight k with
triviai character.

Remarks Very often, one is most interested in the case that the kernel of a
character y as above i1s a congruence subgroup I'. In that event, one sometimes
considers Wim(I"", k) and neglecis the character y. However, this is not always
appropriate and not always possible.

PROPOSITION Let I' be a congruence subgroup, and let A = {ue F:(§ {) e’} Then

any f € Wfm(I', k) has a Fourier expansion

flzy="Y crexp2miTr(éz)),

e At
where Tris the C-linear extension to C™ — C of the Galois trace F — Q, and where
AT = {ue F: TrluA) < o}

is the dual Z-module to A. This Fourier series is absolutely convergent, and
uniformiy so for z in compact subsets of H™.

Proof  First, note that since I' contains some ['(n), A contains some non-zero
ideal n. Writing z = x + iy with x = (x,...,x,,)e R" and y = (y,...,y,) € R”,
f(x 4+ iy) is certainly as smooth as one could desire, as a function of x e R™
Therefore, as a function of x, f has a Fourier expansion

fx+iy)= Y cy)exp2niTr((x))

Cep*

which is absolutely convergent, and uniformly so for x in compact subsets of $™. It
is easy to see that the only exponentials which enter are those given by £ € A*. For
S to be holomorphic in z = (z,,...,z,) € $™, the Cauchy-Riemann equation

-idf/ox; = af v,

must be satisfied for j = 1, ..., m. That is, for each j, we must have
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iy cy)2mig;)expRuiTr(x)) = Y deq(y)/Cy;exp2mi Tr(éx)),

JeA Ee A*
where ¢; = g;(¢). By uniqueness of Fourier expansions (in x) we must have
—2ngie (y) = deel y)/0y;.

Therefore, solving the indicated system of differential cquations, there is a constant
c¢ so that

c(v) = ceexp(—2nTr(ly)).

Finally, to see that the Fourier series is absolutely convergent and uniformly so in
compacta in 9™, we observe that as any component y; increases, exp(—2x Tr(ly))
does not increase. As we have already ascertained the uniform absolute convergence
in x, this gives the result. a

Definition Let f € WIm(I', k). Then say that f is a holomorphic Hilbert modular
Jorm of weight k with respect to T if, for every g € GL* (2, F), the Fourier expansion

(f1k@)(2) = Y ci(g)exp(2ni Triéz))
z

has c,(g} = Qunless ¢ = O or Lis totally positive. Let Mfm(I™, k) be the C-vectorspace
of holomorphic Hilbert modular forms of weight k with respect to I'; let

Mfm(k) = U Mfm(T", k)

congruence subgroups [

denote the space of all holomorphic Hilbert modular forms of weight k.

Definition A function f € Mfm(I", k) is 2 holomorphic Hilbert moduiar cuspform
of weight k with respect to I if, for every g € GL™(2, F), the Fourier expansion

(Jlkg)(2) = ; cg(g)exp(2mi Tr(¢z))

has c.(g) = 0 unless ¢ is totally positive. Let Cfm(I", k) be the C-vectorspace of
holomorphic Hilbert modular cuspforms of weight k with respect to I'; let

- Cfmik) = U Cfm(T, k)

congruence subgroups I”

denote the space of all holomorphic Hilbert modular cuspforms of weight k.

PROPOSITION Let I' be a congruence subgroup. and let g e GL*(2, F). Take f in
Wim(T, k) (respectively, in Mfm(I", k), Cfm(T, k)). Then f|,g is in Wim(g~'T'g, k) (re-



