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Preface

This volumes contains the proceedings of the International Symposium held in
Kazimierz Dolny in Spetember 1991. Like the previous seminars organized by
Technical University of Radom every two years from 1979, it was devoted to
discussions of the results and problems in such fields as: several complex vari-
ables, Riemannian and Hermitian geometry, spectral theory in Hilbert space,
probability and applications in the mathematical physics. Particular consider-
ation was given to the interrelation of ideas from different areas.

The present volume is the third one in the series. The previous two “Prace
Matematyczno-Fizyczne” 1982 and 1988 were published by RTU.

Tomasz Mazur
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On factorization of noncommutative substitutionary
matrices with not prime order on complex plane

IRENE DMITRIYEVA

Mathematical analysis' department, Odessa Pedinstitu=
te, Komsomolskaya St., 26, 270020 Odessa, Ukraine,
USSR

ABSTRACT

The main purpose of this paper is the res—
earch of connections between the vector boun-
dary Riemann problems with the substitutionary
matrices on complex plane and on algebraic sur—
face which covers it. The necessary and suffi-
cient conditions of constructive factorization
for noncommutative substitutionary matrix on
complex plane are received.

1. INTRODUCTION. During the last years some works 1)
- 5], which were dedicated to factorization of substitu—
tionary matrices, have appeared. From the very beginning
we must note that the substitutionary matrixl(l of order
W\ is such object which is raised by corresponding sub-
SEFeudrok ‘CIFE IR B f")z (JiJWI) . In matrix.()

LAy

all elements in line K are zeroes except the one which is
situated in column | and is equal to one, (JK e b e
SR, )-

The matrices from works 1] = 5] were noncommutative

only in case of order M < 5 ,
Here we must add that in this paper the noncommuta-
tive matrix means such one that has no linear conversion



which is constant everywhere on given curve and transforms
this matrix to the diagonal form 6].

So, after formulation above mentioned definition, it
becomes quite obvious that the constructive factorization
of noncommutative matrixﬂ on complex plane d: has no
principal difficulties, because it is equivalent to soluti-
on of ¥\ corresponding scalar boundary Riemann problems.
The methods of solution of scalar boundary Riemann problem,
either on complex plane Q: or on compact Riemann surface,
are well known 7], 2], 8].

Hence, the most interesting problem in matrices' fac-
torization is the constructive factorization of noncommu-
tative matrix. The methods of above mentioned works 1] - 5]
in case of noncommutative substitutionary matrix consist of
scalar boundary Riemann  problem's solution on surface,
which covers Q: and which is constructed according to the
initial substitutionary matrix in special way 3], 4]. The
constructive solution for scalar problems of this type is
rather difficult in ideological and in calculating meani-
ngs as well. These difficulties appear already in case of
three-~ and four-leafed covering of Q: 3], 4]. According
to mentioned method in case of "more"-leafed covering ofl,
all problems and even the way of solution for constructive
factorization of noncommutative substitutionary matrix are
unobserved at all.

In this paper such a new approach is offered: the con-
gtructive factorization of noncommutative substitutionary
matrix with order " on Qj becomes attainable because of
constructive factorization of corresponding commutative su—
bstitutionary matrix with order N < ¥y on compact Rie-
mann surface tQ which covers dj .

At the end of this paragraph we must note that the in=-
terest to substitutionary matrices' constructive factoriza—
tion is connected not only with the researches of new types
of vector boundary Riemann problems, but with numerous que=-



stions in algebraic functions® theory and in theoretical
physics as well, i.e.: the construction of algebraic equa=
tion for Riemann surface, the building of algebraic funct-
ions' field,etc. 9] - 11]. Such factorization is also the
basis for constructive factorization of substitutionary
matrix-function (m.=f.). Substitutionary m.-f. means usual
substitutionary matrix where instead of all units the fun-
ctions from Helder class are situated.

2. PRELIMINARIES. By open curve on compact Riemann
surface& we imply open smooth Jordan curve without inter—
sections on Q'R and which is homeomorphal to the interval
(0,1) of the numerical axis.

Then the class ﬁ,o (éfy'qﬁ)must be defined. It is the
class of vector—functions which are analytical everywhere
on surface & except the open curve i « These functions
are H-continued from left and right on Sf, and are restric-—
ted on the edges of o« Also they assume the finite order
on infinity.

We say that function“f(g) ,%eJQ, is divisible by
divisor % if (“F) ¥ % is the integer divisor. Here

(‘-{’)is the divisor which consists of zeroes and infini-
ties of function « The notation of this definition lo=-
oks like: % ' (Lf) .

Now the canonical solution matrix (c.s.m.) on compact
Riemann surface oK must be defined. This definition is ana—
logous to well known definition of ce.s.m. on complex plane

(E 12]. So, we say that matrix X(%) ,?éﬁ s is the
Cesem. 0Of boundary vector Riemann problem with matrix—coef-
ficient's dimension M\ on surface o s ife a) 3((?) sa=
tisfies the given boundary condition; b) O(d: X(%) has no
poles anywhere in finite part of & and may be equal to
zero only on the edges of curve g£ . ¢) The orders 2. y
(J: 1Tn), of columns in matrix y(ﬁ) on infinity can't be
lessened.

The new property c') follows from property c), and it
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sounds as: matrix /J[( ) satisfies the above mentioned con~-
ditions a) and b). Then y (%) is c.s.m. of given boundary

vector Riemann problem on [ , if olei— y(%) :i ’LJ- .
) i=1

Matrix 3( (%) . G\R, is normal solution matrix
(nesems) of boundary vector Riemann problem on ?JZ, if
A (%) satisfies conditions a), b) and doesn't satisfy

the condition c), i.e. Q:Z’( doit y(3)< i /ZJ'-
J=1

Hence, the following proposition exists: the general
solution of vector boundary Riemann problem on compact Rie-
mann surface ﬁ may be expressed with the help of c.s.m.
by formulas which are analogous to corresponding formulas
on complex plane. ot

The partial indexes 9@J ’ (J: 1, m ), of given vector
boundary Riemann problem are defined in such a way:

P el o5 (J‘: [;W), and they are invariant concerning the
method of ce.s.me's construction.

Here we must underline that the effective solution of
homogeneous vector boundary Riemann problem with matrix=—
coefficient on open curve f = % is equivalent to
constructive factorization of matrix ._(l_. sy leee matrix-—
coefficient (). must be represented in such a way:

SL)=X(P (X(0)) " mere XZ(7), N EL ., are
limited values of me=f. :)((3) 3€ J , from left and right
on i accordingly. ]( (%) is analytical everywhere on ﬁ
except the curve and its evident representation is
known. The dimension of J(( ) is equal to 1 « It must be
added that the effective solution of homogeneous vector bo-
undary Riemann problem means the constructive building of
its c.se.m. and calculation of its partial indexes.

So, when we say about constructive factorization of
matrix L_O_.. , we imply the effective solution of correspon-
ding vector boundary homogeneous Riemann problem with mat-



rix-coefficient :_(1. » and vice versa.

The last agreement in this paragraph concerns the de=-
finition of monodromy group. When we mention it, we imply
the substitutions which are fixed on corresponding edges
of given open curves 13].

3. PROBLEM'S FORMULATION. Let R be compact Riemann
surface with genus P>O » and its algebraic equation looks
like

F(z, u)—u"+%(z)u”* +A WEN P 5 e
where T (2), (J g H), are polynomials over the field of

complex numbers, and (2 L() is considered as point on R .
The open curve on is fixed:

p
| REE UL.K . L-,;/]L':@ when Cij ¥ (2)
k=1 J

where LK:(JK7\/(°[K))' @k, \/((SK)) ,(K: 4:?), is open
curve on [ , and F(£,v)=0+ The vector-function

¢(Z,H):{CI> (@ou)s oy B (Zuieﬁ (L;R),(zueR,

which satisfies the follom.ng boundary condition

B(t,v) =Lt V)P Gy, @k v)el, D (), @
is sought.
Here: ) {(oo Uw) (oo UOQ ) j

is "1 =dimensional vector-dlv:.sor of 1nf1n1t1es on Q ;620
is the integer number; nf)..(f,v)ls M -=dimensional substitu-
tionary matrix which represents such monodromy group on R

‘(L 5 f;'), L.K7(K:1—)W), (4)
The structure of matrix-coefficient -.Q.(f V)looks like
Q. (¢, v) = z RS EAT A s o o =

E,v)e L, T
8(-[: v LK) {O (1‘.‘, )QL.\I_. )(K_17M);
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where (), k is matrix-representation of substitution K 9
(K: m), from system (4). Besides, the monodromy group (4)
is considered as the commutative one. Hence, its matrix-re-—
presentationt.(L(t,V)is the commutative substitutionary mat-
rix too.

Then, let S be the linear conversion which is consta=
nt everywhere on L, and which transforms the matrix=-coeffi-
cient (5) to diagonal form T*. Applying conversion S to
boundary condition (3), we receive 1 scalar boundary Rie-
mann problems on R which are solved effectively 7]. For
their constructive solution we must find the normal basis
of surface R .

It is quite possible. From algebraic equation (1) fol-
lows that R is N =leafed covering of G ¢ its monodromy
group is defined by equation (1), and vice versa. Then, let
the monodromy group of Q has such structure

?e:(jim... 'Vfu)y % o LtF GV, (6)

where: ¢ ,(KZI,—A/), is the system of commutative substi-
tutions;

N
F:HD,I’}HFL =@ when LiJ', (7)
and FC: (6267 éﬁ), ((:J)_/V), is open curve on (, .

The constructive building of Q s normal basis is
realized either because of application of Newton's diagram
13] to algebraic equation (1), or because the correspondi=-
ng vector boundary Riemann problem is solved effectively.
Rather often the Newton's diagram works uneffectively,
i.e. instead of normal basis we receive the fundemental
one (look the examples from 137 ).

S0, let's consider the corresponding vector boundary
Riemann problem in class /{LO <F7‘0:')with such boundary condi=-

ST W)= 6, te T ®)
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Here: G (1‘:) is |1 =dimensional substitutionary matrix with
such structure

N
G('L': 78.{:[“ (_;r‘ . g, i,féf}
) (%CC ( Y (;)71E ¢, S(t)ré)— O,{:éF\D7(9)
(=1,N);

G(; ’ ((: {7 /\/}, is matrix-representation of substitution
. ((=1,N)s from monodromy group (6) - (7);

({/(z):{‘FZ(Z),...,(Vh(z)féﬂo(l“,‘(ﬂ), ze C, isun-
known |1 =—dimensional vector—function.

The commutativity of substitutions (6) raises the com=-
mutativity of matrices (, ,({={,Mh So, let A be the li-
near conversion which is constant everywhere on T‘ and
which transforms the coefficient (9) to diagonal form Lere
The solutions of ¥ corresponding scalar boundary Riemann
problems with piece-constant coefficients on G 8]

) PN E B 2 (10)

form the sought for normal basis of R y and functions

{,{J‘ = (,{J' ¢ 2) ,(J':i,T-U, are ¥l -leafed over (| 13].
After inverse conversion of /\ is applied to c.s.m. of abo-
ve mentioned boundary value problem with diagonal coeffici=-
entA » the ces.m. of problem (6) - (9) appears

uiwf} . (/((q") {

n-1

X(ZBZ ' : 7 (11)
(4.n) (9n)
U, I 7 e

where U *(?’6), (J:lm] ic_:l,_ﬂq,' C=1,n), is leaf Q. of
function® [{; which is ) =leafed over (( . The columns in
(11) are situated in such a way that their orders on infi=-
nity don't increase from left to right. We must note, that
the leaves' distribution of functions (10) in c.s.m. (11)



is realized automatically, because of application of dire-
ct and inverse A»-conversion (look, for example, 2] )
Now, let the functions

TR B, Fyme (B0, 1] (12)

be the solutions of 1 corresponding scalar boundary Rie-
mann problems which were received earlier from diagonal
matrix—-coefficient T*. These scalar Riemann problems have
piece=-constant coefficients on surface Q '7], and they
were received after linear conversion S was applied to
boundary condition (3). Functions (12) are 1 =leafed over
Q and M -leafed over @ .
After inverse conversion of S was applied to cese.me. Of
mentioned earlier boundary value problem with diagonal co-
efficient TW, the ce.s.me. of problem (1) = (5) on surface

R appears :
A AT AGA I

Xi (27('() = . ) (13)
: (Pm (Pm ) ‘

CE; % m- { ’ 4'
where@ (Pd) ’ (L—im = Pd im d { wv)v is leaf Pd of
function cp c@ (2 u)from system (12). The columns in
(13) are 51tuated 1n such a way that their orders on infi-
nity don't increase from left to right. The leaves' distri-
bution of functions (12) in ce.se.m. (13) is realized automa—
tically because of application of direct and inverse S
conversion (look, for example, 2] ).

Here we must note, that in process of (1) = (5) prob-
lem's solution, simultaneously with ce.s.m. (13), N—-1
ne.s.m. of problem (1) = (5), were receiveds:

( (
‘%f‘) 2,u) CID P‘_){ (z,u) 1
X, @uws=| - (Pr) AR
CEL (2, CP "t upeot



Here functions Cb @ (2 W)s (J 2.1 i L—{ - 1), have the
same properties as functlons (12), except the one: their
orders on infinity are bigger than the orders on infinity
of corresponding functions from (12),- O'w(CfD > O‘ld’%

( (=45 M), 523, Bk

4. MAIN RESULTS. Now we must find out, what the matrix
boundary Riemann problem with noncommutative substitutive
coefficient on (E was raised by matrix Riemann problem on

R (1) - (5).

It's well known 13] that the pasting together of
copies of surface p according to substitutions (4) reduces
to oriented closed Riemann surface ;ja which is 7 =leafed
covering of R « This surface CR may be considered also as

1 =leafed covering Cﬂ of complex plane G » because
R is K -leafea over { (1).

Hence, naturally the following problem appears: know-
ing the monodromy group of surface @ s to build the mono-
dromy/\’group of surface w*. In this case the monodromy group
or O may be considered as substitutions (4) which are fi-
xed on the corresponding edges of curves (2). The edges of
curves (2) are the 's points of ramification. About the
unknown monodromy group of surface :;2* we may say beforehand
only that subatitutions' order is equal tomn , correspon-
ding open curves are situated on Qj and their edges are the

's points of ramification.

Looking at this problem from aspect of monodromy group's
matrix-representation, we may assert that the effective so-
lution for this problem means the following process: buil-
ding the surface y Simultaneously we made the construc-—
tive factorization of commutative matrix (5), i.e. the
ceseme (13) of problem (1) = (5) was constructed. Then we
considered the set of vectors which realized this factoriza-
tion, and some special vectors from this set were chosen.
These special vectors accomplish the factorization of non-
commutative matrix-coefficient which represents the monodro-
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my group of surface 02* .
This problem is solved because the behaviour of (1) -
(5) problem's solution C?(Z,(,{) was investigated in neig—
hbourhood of critical points Z=a,, Z= &, ,((={,N), and
Z=ol s 2=Bs(k=LFM} (Look (6) = (7) and (2), (4) co-
rrespondingly ). Taking into consideration the structures
of monodromy groups (4), (6) = (7), results and methods of
works 13] - 15] s, we receive the unknown substitutions:

AL PR 5 7 R

(R s %) (J'{”J,(mz)n,,,',{‘L(m-f)n)}hs)
[*= Ufﬂe M= (ae,4e)

2=, 2=k, (K= 4,M)

(e T 19 2T SV tdrtefPn 2 (i)
=T 9-14) (69n _Ti(k)““l)..‘ (LV‘Y"()H—'C,("K)J)(C,&”n—fr(n“‘fo
e e . 30 Lo ool

(T\)(k)'_‘oa n-{; V= 47’4—)

Non=commutativity of substitutions (15), (16) is checked up
directly.
*
The surfaces w and (P are topologically equiva-
lent, they have the same genus

P*_—_ m(p~{)1.{+J2_\/) (17)

where V _is index of ramification (branching) 13] 3 16] of
surface o0 . Formula (17) is received according to 16].
So, we have received such
Theorem 1. Let the compact Riemann surface Q with ge=



