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PREFACE

This book is primarily intended for Mathematicians with no, or little, back-
ground in Physics; much emphasis is laid on the interlocked historical devel-
opment of mathematical and physical ideas.

For didactic purposes, the book is divided in three parts. Parts II & III
" can be covered in one semester each, as part of an introductory survey course
on Applied Mathematics in the Graduate mathematics curriculum. Part I
is elementary enough to be assigned for independent readings. The mathe-
matical level of discourse should present no problem for a beginning graduate
studenf in an American mathematics department. If this student were to con-
sider the book for self-study, (s)he might find useful to have had, or to take
concurrently, one-semester introductory courses in Functional Analysis and
in Differential Geometry: these are two amongst the main tools of today’s
Mathematical Physics; they, however, are not prerequisites: all terms appear-
ing in the text, mathematical as well as physical, are defined. What is re-
quired from the reader is the curiosity and the breadth necessary to under-
take repeated crossings of the bridges which exist between Mathematics and
Physics, two disciplines traditionally considered as closely allied fields; (s)he
will follow in this journey the steps of such luminaries as Archimedes, Fermat,
Newton, Euier, the Bernoullis, Lagrange, Laplace, Fourier, Cauchy, Gauss,
Poincaré, Cartan, Hilbert, Weyl and von Neumann, not to mention the names
of many Mathematicians or Mathematical Physicists now active.

For the mathematical audience thus defined, this book will present the
main ideas and fundamenta: concepts of 20th-century Physics, with special
attention to the concurrent mathematical developments. This century has
indeed been marked by two conceptual revolutions from which Mathematics
drew considerable impetus: the theory of Relativity and Quantum theory, both
owing much to the seminal ideas of Einstein, one of the great geniuses of all
times.

As no intellectual revolution can be properly understood without some knowl-
edge of the paradigms prevalent at the time of its inception, Part I provides a
survey of Classical Physics, which we divided in three chapters: Mechanics,
Thermodynamics and Statistical Mechanics, and Electromagnetism. Thisstudy
provides opportunities to place in perspective the successive advents of Calculus,
of Probability and Statistics, of Differential and Symplectic Geometry, and of
classical Functional Analysis.

Relativity is presented in Part II of this book, and Quantum Theory in Part
III. The motivation provided by physical problems in the development of math-
ematical disciplines such as, for instance, pseudo-Riemannian Geometries,
Hilbert Spaces and Operator Algebras, are emphasized.



ix

Aside from the primary aim of this book, which is to present a unified
mathematical account of the conceptual foundations of 20th-century Physics,
under a single cover and in a form suitable for use in a survey course in Applied
Mathematics, it is hoped that the book will also serve another function, namely
that various parts of the work will be excerpted, and incorporated in separate
courses pertaining to the Pure Mathematics curriculum, to provide illustrative
examples, further motivations, and testimony to the unity of the Mathematical
Sciences.

Finally, the author hopes that this book will help mathematicians broaden
their exchanges with physicists, and with philosophers and historians of science.
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CHAPTER 1. MECHANICS

SYNOPSIS

There is a good deal of truth in A. N. Whitehead’s caveat: “... in a memoir
one’s whole trouble is with the first chapter, or even the first page. For it is
there, at the very outset, where the author will probably be found to slip in his
assumptions. Further, the trouble is not with what the author does say, but
with what he does not say. Also, it is not with what he knows he has assumed,
but with what he has unconsciously assumed”. Still, the author must make the
plunge somewhere, swim as he may in whatever murky currents he encounters,
reserving all the while his right to come back, stir and plumb for new depths.
those calm expanses he once thought had been properly charted. We make
our plunge in classical mechanics.

By the turn of the Twentieth Century, Hamilton mechanics was the widely
accepted form of mechanics, the one to be used when a correspondence was to
be found with the new quantum mechanics. For instance, the first formula on
the first page of the first chapter—“Principes de la dynamique”—of Poincaré’s
Legons de mécanique céleste (1805) is the system of first order differential
equations of Hamilton, which we write:

" ot _oH & __oH
dt — dpt ' dt 8¢

The system of equations reflects the presence of a mathematically interesting
underlying structure, namely that of a 2d-dimensional symplectic manifold,
i.e. a differentiable manifold M endowed with a symplectic form w which, by
Darboux theorem, can be written (at least locally):

d
(20 w =Y dp*Adg’

: =1
In many applications M is T* M, the cotangent bundle of a manifold M, called
the “configuration space”; and w is the canonical form w = df [where 0 is the
1-form defined, for every p € T*M and every &€ € T(T* M)y, by 68(£) = p(m.£)
with 7 the projection  : T*M — M]. When M = IRV, M can simply be
identified with the usual “phase space” R*M = {(¢',...¢*V;p!,...p*"}; the
general form is nevertheless necessary, as soon as holonomic constraints are
considered.



MECHANICS

To every smooth {e.g. C® —) function F on M one can then asscciate the

vector field £ defined by

| (3) érlw = —dF
from which one defines in turn the Poisson bracket
(4a) {F,G} = —wlér. &s);
in local coordinates this becomes

OF 0G _OF 0G
>

(4b) {F,G} =

=1

Note that one obtains for the coordinate functions q' and p': :

{(I‘:Cf}=0={p‘1p1} o
(4c) ', ¢} = —6%1 } Vi j=1,....d

Note furt’. - that the Hamilton equations (1) now appear as the equations
for the ir--gral curves of the vector field £y associated to a special function
H, the E- nilton function. In the particular case of a system of N particles
moving {: -ly in the ordinary one-particle configuration space IR®, except for

their mu® - .l (velocity independent) interactions, H takes the form
(5a) H=T+V
1
with )
u 2
(5¢) V=V(a,-.,an)

In this case, Equations (1) reduce to:

O _1_ . i ov
(6&) dn = mnp“ ) D= aq’;
so that
v (6b) Fp = m,q4, with F,.‘ = -—ﬂ,—

Aqh
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To understand the facts of experience lying behind the interpretation of
F, as the “force” acting on the n-th particle, m, as its “mass”, p, as its
“momentum”; of T as the “kinetic energy” of the system, V as its “potential
energy”, and H as its “total energy”, it is helpful to back up in history to
what should be called Euler’s mechanics. It is traditional and convenient
to divide classical mechanics into three parts, the first being associated to
Newton’s Philosophiae Naturalis Principia Mathematica (1687), the second
to Lagrange’s Mécanique Analytique (1788), and the third to Hamilton’s
General Method in Dynamics (1834 1835) and Jacobi’s Vorlesungen uber
Dynamics (published by Clebsch in 1866). :

Our three sections’ headings perforce have to use this discrete nomenclature—
Newtonian, Lagrangean and Hamiltonian mechanics—which artificially par-
cels out a continuous development starting before Galileo and continuing after
Poincaré. We will also allude to some of the problems of current interest:
however “classical” it may be called, mechanics is still a field of active research
where new mathematics and, thus, new physical understandings are in the
process of being developed.

Section 1. NEWTONIAN FORMULATION

Mechanics is a science of experience, an experience apprehended by obser-
vation, controlled by experiment, and comprehended by theory.

One of the established sources of experience that played an important role
in Newton’s formulation of rational mechanics and of universal gravitation
was observational astronomy, culminating in Kepler’s three laws of planetary
motion, published in Prague, the first two in his Astronomia Nova (1609) and
the third in his De Harmonice Mundi (1619). These laws are: (1) each planet
moves in an elliptical orbit, with the sun at one focus of the ellipse; (2)
the focal radius from the sum to a planet sweeps equal areas of space in
equal intervals of time, (3) the square of the sideral periods of the plangts.
are proportional to the cube of their mean distance to the sun, a statement
which we transcribe as:

(1) AP =kT?

where T is the period of the planet on its orbit, and A is the semi-major axis
of its elliptical orbit, i.e. the average of the distances between the sun and the
planet at its aphelion and perihelion; as we shall see below, the proportionality
factor k can be computed in term of t.he gravitational constant of Newton’s
_theory of universal gravitation.

* The use of controlled experiments was persuasively advocated by Galileo in
his Discorst e Dimostraziont Matematiche intorno d due nuove Scienze at-
tenti alla Mecanica & { Movimenti Locali (1638). Whether Galileo was faith-
fully reporting the results of experiments he had himself actually performed
ig_not terribly relevant,eilthough we should mention that doubts were raised



4 MECHANICS

on that account, already by some of his contemporaries, e.g.. Mersenne in
France. The main point we want to make here is that Galileo was eloquently
expounding, as a reflection of contemporary concerns, that the primary role
of controlled experiments is to discriminate between opposing theories. Hence,
theory has to come first, to organize observational experience and to inform
the sensible planning of experiments.

The rational mechanics of the 17th century, however, did not happen as a
sudden reaction to some hitherto unchallenged misconceptions inherited from
antiquity; it was instead slowly brought into focus through the perceptive work
of the medieval critics of Greek science. These now obscure scholars started
the programme that would eventually replace the qualitative notions, that
emerge from common experience of motion, by qualitative statements on: the
geometric description of motion (kinematics); the analysis of its causes or
manifestations (dynamics); the notions of force, torque, pressure, stress and
their effects; the concepts of mass and inertia; the derived quantities we now
call linear and angular momentum, kinetic and potential energy, work, power
and action. !

One of the achievements of medieval science was the logical distinction be-
tween the computational geometric questions of kinematics and the céncep-
tually more invoived problems of dynamics. Between 1328 and 1350, the
scholars of Merton College in Oxford succeeded indeed in formulating \plea.r
enough ideas of instantaneous velocities and accelerations, allowing them to
state a rule to the effect that in a rectilinear uniformly accelerated motion, the
space (T — Zo) travelled in an interval of time (¢t —t,) is given by:

e

(2) (2 —z0) = 5(v -+ wv) (t —to)

N

where vy (resp. v) is the velocity at time ¢, (resp. ¢). Similarly dim, but sound,
ideas on the change of rate of changes can be found in De Uniformitate et
.Difformitate Intensionum (1350) and Tractatus de Latitudinibus Formarum
(n.d.) by Nichole Oresme in France, who can be credited with a geometrical
proof of the “Merton rule” (2) akin, again in modern language, to the com-
putation of the trapezoidal area under the graph of v as a function of ¢. The
fact that v is here a linear function of ¢ did obviously help since calculus was
still a long way ahead. Indeed, it took some three centuries until enough
power and confidence were built into the mathematical apparatus to allow the
elegance and economy of concepts on which Newton erected his Principia
(1687). What can be regarded as the first, even if incomplete, axiomatic for-
mulation of mechanics holds indeed in the following three laws, stated in the
beginning of the Principia: (1) every body continues in its state of rest, or of
uniform motion along a straight line, unless it is compelled to change that
state by forces impressed upon it; (2) the change of motion is proportional to
the motive force impressed, and it takes place in the direction of the straight
line tn which that force is impressed; (3) to every action there is always an
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opposite and equal reaction,; or, the mutual actions of two bodies upon each
other are always equal and opposed in direction. Newton complements these
three laws with a few “definitions”, among which it is necessary to quote here
the following ones: (a) “the quantity of matter is the measure of the same,
arising from its density and bulk conjunctly ... it is this quantity that I mean

. under the name of body or mass. And the same is known by the weight
of each body, for it it proportional to the weight ... ”; (b) “the quantity of
motion is the measure of the same, arising from the velocity and quantity of
matter conjunctly ... ”; (¢) “an impressed force is an action exerted upon a
body, in order to change its state, either of rest, or of moving uniformly along
a straight line. This force consists in the action only; and remaind no longer
in the body, when the action is over. For a body maintains every new state it
acquires, by its vis inertiae [force of inactivity] only”.

These laws and definitions call for some immediate comments.

Firstly, the reader will have noticed that Newton assumed an acquain-
tance with kinematics. He stated explicitly—in a separate commentary, or
scholium—that he does “not. define time, space, place [i.e. volume occupied
by a body] and motion [in particular velocities, absolute or relative, and ac-
celeration], as being known to all.” One might add that, although Newton
refrained from using explicitly the notation of the fluxions in the Principia,
the notions and methods of infinitesimal and integral calculus nonetheless per-
vade implicitly his exposition throughout. If he tried to hide this, as some
authors would have it, the subterfuge would be so transparent to the modern
eye, that little (if any) insight would result from trying to hide the obvious in
the present survey: our aim is primarily to outline the substratum of concepts
on which 20th-century physics was erected.

Secondly, we should point out that the definition of mass in Newton’s
Principia requires some elaboration. Mach (1883a) noticed that Newton’s
third law gives an empirical mean to determine the ratio of two masses; he
started with the empirical definition: “all those bodies are bodies of equal
mass, which, mutually acting on each other, produce in each other equal and
opposite accelerations”; on that basis, Mach then argued that this empirical
determination of the equality of two masses can be extended to an empirical
determination of the ratio of two arbitrary masses, and that this relation is
transitive. It might be of some incidental interest to notice that Mach (1883b)
used a similar reasoning to reach an empirical definition of the quantity of
electricity, i.e. electric charge (see Chapter Three). Of more immediate interest
here, we must notice that Newton, in his definition of mass, identifies the
inertial mass (resistance to changes of linear motion) and the gravitational
mass (as measured through the weight of the body). This identification is
by no means trivial; it was to be elevated, by Einstein, to the status of a
fundamental principle of equivalence, according to which no external static
homogeneous gravitational field can be detected in a laboratory in free fall in
this field, since both the observer and his measuring apparatus will respond to
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the field with the same acceleration. Newton himself felt it necessary to state
explicitly that he did verify the identification between these two notions of
mass by experiments “very accurately made” on pendulums of equal lengths,
but different compositions, and that he found no detectable differences in their
period. This result was subsequently verified with increasing precision. At the
beginning of the 20th century, as a result of delicate balancing experiments
conducted by Eotvos, the difference between the ratio of the inertial and
gravitational masses of wood and platinum was known to be less than one
part in 10%; the method was further improved by Dicke et al. {1964) to reach
an experimental coincidence with 10—*! between aluminum and gold. We can,
therefore, build with some confidence on a theory that identifies inertial mass
and gravitational mass, as Newton did, followed on that account by Einstein.

We now continue our analysis of Newton’s theoretical set-up with a third
remark, the purpose of which is to emphasize that Newton’s originality, at the
beginning of the Principta,. was mostly in his determination to write down
basic axioms from which the theory could proceed deductively by mathemati-
cal reasoning, and his ability to extract concise axiomatic statements from
the mist of ideas that had accumulated on mechanies, ideas some of which
were correct, others were irretrievably wrong-headed, but most were- vague,
or blurred by extraneous circumstances. For instance, Buridan (c. 1300-c.
1360) had discussed a quantity that he called impetus which, once imparted
to the motion of a body, would continue with the motion until it is destroyed

by some external agency, such as the resistance of the air to the motion of a
" projectile. However, Buridan does not properly distinguish between the nature
of air-resistance and of gravity, nor does he seem to recognize the unique role
of linear motion. Newton’s definition (b) of the gquantity of motion is crisp;
without hesitation, we can write it

(3) p=mv

and then not;e that Newton’s second law of motion can be now transcribed to
read:

(4) | F=2mv)

or, upon assuming that the quantity of matter, as measured by the mass m, is
independent of the state of motion of the body:

. _dv  d’z
(4b) F=ma with a:E—W=$
which, after the work Euler did in the mid-18th century, has become the
. textbook form of Newton’s second law. Anticipating further the post-Newton-
ian developments into the 18th century, we can already remark here that if
it happens, as is the case for gravitational forces, that there exists a function
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V:z€R®— V(z) € R such that F = —grad V, i.e. in modern language, if
the force derives from a potential, Newton’s second law takes the form

(4c) pe=—0V (k=1,2,3)

These formal manipulations of Newton’s second law, while legitimate and
useful, may nevertheless divert attention from the fact that this second law
subsumes a wealth of unconscious assumptions and idealizations. We shall
discuss later the question of whether Newton’s formulation suffices or not for
establishing the equations of motion of bodies that are more complicated than
systems of point masses. Our next remark is directed, rather, to the motivation
behind the concept of force. Newton’s contribution suggests, at least implicitly
by the use he makes of it, that force is a primary concept. It is nevertheless
of interest to understand how it came about that forces should be represented
by vectors—or by vector fields, as is the case for gravitation—even before they
could be fitted so snugly into Newton’s second law. In this context, it is useful
to remember that dynamics not only assumes kinematics, but also contains
statics as a particular case. Statics is circumscribed, in modern language,
as the science concerned with the conditions under which an array of forces
(and torques), acting on material bodies—e.g. particles, rigid or elastic bodies,
fluids, or assemblages thereof—results in an equilibrium state, i.e. a state of
rest or, more generally, a state characterized by the absence of accelerated
motions. Devoting here a few lines to statics seems justified on account of
the following three circumstances: (i) elementary situations come more easily
under experimental scrutiny; (ii) the theoretical analysis of these situations
does not require, at the start, the full epistemological apparatus necessary
to distinguish all the fine threads running through the fabrics of the shared
intuitions stored under the name of experience; (iii) the historical development
of statics, especially in the 18th century, but also earlier and later well into
the 20th century, shows that its purview is broad enough to provide essential
clues into the general case of dynamics.

In particular, the mathematical nature and rules of composmon of forces as
vectors attached to different pomtsf:f space, came to light in the 16th-century
study of statics, although one finds a forerunner in Archimedes’ law of levers.
We find for instance that in De Beghinselen der Weeghconst [The Elements of
the Art of Weighing] (1586), Stevin starts with a discussion of various systems
of levers, and then begins his theory of the inclined plane with the following
result: “Proposition XIX. Given a triangle, whose plane is at right angle to the
horizon, with its base parallel thereto, while on each of the other sides there
shall be a rolling sphere, of equal weight to one another: as the right side of
the triangle is to the left side, so is the apparent weight of the sphere on the
left side to the apparent weight of the sphere on the right side.” Although
Stevin does not seem to care giving a clear-cut definition of what he means
by the term “apparent weight”, the meaning springs out from the context,
:namely the “proof” he proposes, and the “corollaries” he derives from his



8 MECHANICS

proposition. Indeed his reasoning amounts to showing that if two spheres are
of such unequal weights that their apparent weights would maintain them in
equilibrium were they to be linked by a {weightless, inextendible) string, then
their apparent weight would be what we call today the tension in the string
or, more abstractly, the components of the weights of the spheres along a
direction parallel to the inclined plane on which they are placed. From the
variants of this problem, which Stevin analyses using various combinations of
strings attached to hanging weights, to pull first on a sphere on an inclined
plane, and then in subsequent examples, to pull on freely hanging rigid bodies
of arbitrary shapes, it becomes clear that Stevin had recognized that “apparent
weights”—i.e. forces—are characterized by their magnitude, their direction,
and the point of the body on which they act. Moreover, the nature of his
argument is such that he has been credited for having arrived at the law
of the parallelogramme of forces, i.e. the law of addition of vectors. It
should, nonetheless, be noted that Stevin’s proof of his proposition XIX is
based on what he presents as a reductio ad absurdum involving the absence of
perpetual motion; the reasoning, however, was formalized by Varignon in his
Nowuvelle Mécanique ou Statique (1725) where he shows that the law of the
parallelogramme of forces can be obtained as an application of the principle
of virtual work. In that treatise moreover, Varignon reproduces a geometric
argument, he had presented to the Paris Academy in 1687, to the effect that
the law of the parallelogramme of forces implies the law of levers. This law
states that if n forces Fy (k=1,2,...,n) act at n points z; (k=1,2,...,n)
of a rigid system whose motions are constrained to be rotations around a fixed
point z,, then the equilibrium condition is:

n
(5) M=0 with M=) (zx— z)A F}.
k=1
M, = (zy — ;) A Fy is called the moment (or torque) of the force Fy with

respect to zo, and M is the total torque applied to the constrained system. To
maintain this constraint, namely that z, be fixed, a force

(6) Fo=—:2_:1 P

has to be exerted at the point z,. Hence the conditions of equilibrium of such
a rigid system are

n

(Ta) F=0 (with F=) F)
k=0

(7b) M=0 (With MEZ :c,,/\F‘,,)
k=0

Note that, because of (7a), we can replace z; in (7Tb) by & = zx 4 £ with
arbitrary. '



