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PREFACE

THIs BookK is intended for all who require a mathematically sound,
but elementary introduction to the theory of probability.

Probability concepts are now of great importance in a wide variety
of fields. The theory of probability, as the foundation upon which
the methods of statistics are based, should command the attention of
those who want to understand as well as apply statistical techniques.
Probabilistic theories, making explicit refercnce to the nature and
effects of chance phenomena, are the rule rather than the exception
in the physical and biological sciences. Less well known is the fact
that probability concepts are finding increased use in the social
sciences and business: psychologists develop stochastic models for
learning; economists use the techniques of game theory to discuss
competition and markets; expected values, variances, and other mat-
ters related to random variables turn out to be important in the
problem of finding combinations of securities that best meet the
needs of the investor; business managers, because their decisions
must be made in the face of uncertainty, invoke the theory of prob-
ability as an aid in planning inventory, establishing quality control,
designing market surveys, ete. We nced not go on—it is clear that
probability concepts and methods are now widely used and will see
even more extensive use in the futurec.

One noteworthy indication of the importance of our subject is the
recent decision of the Commission on Mathematics of the College
Entrance Examination Board to recommend that a course in prob-
ability and statistical inference be offered in the twelfth grade of the
sccondary school. Thus, secondary school teachers of mathematies,
at some point in their college or in-service training, or in summer
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" PREFACE

institutes (such as those sponsored by the National Science Founda-
tion), should achieve some mastery of the elements of probability
theory. Parts of this book were used in courses offered in NSF Insti-
tutes held at Oberlin College in 1958 and 1959, and the final manu-
seript has benefited from the helpful comments of the many teachers
who studied preliminary versions.

Although there are a number of excellent textbooks on probability,
they are all written for readers who have the mathematical sophisti-
cation that comes with a working knowledge of the differential and
integral caleulus. It seemed to me worthwhile to bring the theory of
probability to the attention of those who do not have the calculus
prerequisite. It was with this aim in mind that I limited myself to
those topics that are accessible to readers with only a good back-
ground in high school algebra and a little ability in the reading and
manipulation of mathematical symbols. The consequent limitation
to finite sample spaces, although severe, facilitates a careful logical
treatment of the essentials needed by all who use probability con-
cepts. Furthermore, I have found that an understanding of the basic
definitions, theorems, and methods in the finite case makes it much
easier for students with the necessary preparation to master the
corresponding ideas in the infinite case. T am therefore hopeful that
this volume, although written as a basic textbook for courses in
probability and statistics for students without calculus, will also
prove useful in courses for those who have previous training in
calculus.

One further possible use of this book is worthy of mention here.
There are many college students who, for one reason or another, can
take at most one year of mathematics. These students are often
offered a smorgasbord survey course in which they sample one topic
after another and learn very little about lots of things. Many teach-
ers, however, prefer to offer a course centering on a few main topics,
going into each systematically and deeply enough to give the student
a reasonable depth of knowledge in the chosen subjects. Although
many topics vie for inclusion in such a program, I believe a strong
case can be made for a course that concentrates on sets and prob-
ability in the finite case at first, proceeds to an introduction to the
calculus, and then applies this calculus to the elements of probability
in the infinite case. (In my own course, I also include applications
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of the differential calculus to simple problems in economics.) Such
a course, if properly executed, can give the student a keen sense
of the nature and achievements of mathematical thinking, while
laying a firm foundation for further study in economics, statistics,
operations research, or allied fields. Such a program would there-
fore be especially valuable for social science and business students,
assuming they can devote only a year to mathematics at the college
level. T have used this volume in preliminary form in roughly the
first third of such a year course at Oberlin College, with students
who present less than three years of high school mathematics for
entrance. Teachers who share my point of view may also find this
book useful in their own introductory mathematics courses.

Since the theory of probability is best formulated using the lan-
guage and notation of sets, we devote the first chapter to the
elementary mathematics of sets. Proofs of laws in the algebra of
sets are simplified by the use of so-called membership tables, a
device analagous to truth tables in logic. Here we also introduce
Cartesian product sets, which are needed at many points throughout
the book.

Chapter 2 develops the basic calculus of probability for experi-
ments with only a finite number of possible outcomes (finite sample
spaces). A probability measure is first introduced over the events
of a sample space and then conditional probability, independent
events, and independent trials are carefully defined. Illustrative
and problem material is here limited to the simplest experimental
situations, and more sophisticated combinatorial techniques are
first treated in Chapter 3. The usual order of topics has been re-
versed because beginning students seem always to have difficulty
with the use of permutation and combination formulas, and this
difficulty often impairs the learning of the basic probability ideas
when both are presented simultaneously. We present the basic ideas
first and then, in Chapter 3, offer a set of exercises in which the
previously mastered probability theory is applied to a wide variety
of situations requiring the use of sophisticated counting techniques.
It has been our experience that this procedure makes it considerably
easier for the student to learn this basic material.

Chapter 4 is an introduction to the analytic theory of probability
in the finite case. Random variables are defined as functions on
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sample spaces, and probability distributions, means, standard devia-
tions, joint probability functions, covariance, and correlation are
discussed. Independence of random variables is defined and, with
these ideas extended to the multivariate case, applications to random
sampling theory can be included. The sampling distribution of the
sample mean is discussed and formulas for its mean and variance
are derived for both sampling with and without replacement.

The most important probability function defined on a finite
sample space, the binomial distribution, forms the subject matter
of the final chapter. The basic properties of a Bernoulli process and
a binomially distributed random variable are derived, and the use
of tables of cumulative binomial probabilities is discussed. Applica-
tions to the testing of statistical hypotheses (significance tests), as
well as to a more complex problem of decision-making under uncer-
tainty serve to illustrate how probability methods are applied in
statistical investigations.

For some classes, teachers may find it necessary to offer supple-
mentary lessons on the method of mathematical induction and the
use of summation signs, as these topics arise in the text. I have
also found that it is wise to constantly remind the beginning student
of the substitution principle, for example, that from Var(X) >0
for all X it follows that Var(2X — 3Y) > 0. Much of the difficulty
beginners have with mathematics stems from a lack of understanding
of this principle, and it is well worth emphasis.

In all other respects, I have made every effort to have this book
self-contained, clear, and readable. Throughout, stress is laid on the
explanation of fundamental concepts and patterns of mathematical
reasoning, as well as on techniques of problem-solving. Problems at
the end of each section are designed to supplement the many
worked-out illustrative examples in the text and to enable the
reader to check his understanding of new definitions, theorems, and
methods. From time to time, problems are included to challenge the
better student—the sample variance, maximum likelihood estima-
tion, the hypergeometric distribution, regression functions, and
OC-curves for sampling inspection are introduced in problems that
are written so as to guide the student toward an understanding of
these important topies. Answers (often complete solutions) to half
of the 360 problems are collected in a 21-page section at the end of
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the book. To facilitate computations, tables of ordinary logarithms,

logarithms of factorials, and cumulative binomial probabilities are

included in the text. A list of books suitable for supplementary

reading appears at the end of each chapter. I trust that these

features will serve to make the hard job of learning a little less hard.
Comments from readers are always welcome.

SAMUEL GOLDBERG
Cambridge, Mass.
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Chapter 1

SETS

1. Examples of sets; basic notation

The concept of a set, whose fundamental role in mathematics was
first pointed out in the work of the mathematician Georg Cantor
(1845-1918), has significantly affected the structure and language of
modern mathematics. In particular, the mathematical theory of
probability is now most effectively formulated by using the termi-
nology and notation of sets. For this reason, we devote Chapter 1 to
the elementary mathematics of sets. Additional topics in set theory
are included throughout the text, as the need for this material be-
comes apparent.

The notion of a set is sufficiently deep in the foundation of mathe-
matics to defy being defined (at the level of this book) in terms of
still more basic concepts. Hence, we can only aim here, by taking
advantage of the reader’s knowledge of the English language and his
experience with the real and conceptual world, to make clear the
denotation of the word “set.”

A set is merely an aggregate or collection of objects of any sort:
people, numbers, books, outcomes of experiments, geometrical fig-
ures, etec. Thus, we can speak of the set of all integers, or the set of
all oceans, or the set of all possible sums when two dice are rolled
and the number of dots on the uppermost faces are added, or the set
consisting of the cities of Cambridge and Oberlin and all their resi-

1



2 SETS / Chap. 1

dents, or the set of all straight lines (in a given plane) which pass
through a given point.

The collection of objects must be well-defined, by which we mean
that, for any object whatsoever, the question “Does this object be-
long to the collection?”’ has an unequivocal “yes” or “no” answer.
It is not necessary that we personally have the knowledge required to
decide which answer is correct. We must know only that, of the
answers ‘“‘yes’’ and “no,” exactly one is correct.

Let us also agree that no object in a set is counted twice; i.e., the
objects are distinct. It follows that, when listing the objects in a set,
we do not repeat an object after it is once recorded. For example,
according to this convention, the set of letters in the word “banana’
is a set containing not six letters, but rather the three distinct letters
b, a, and n.

The following definition summarizes our discussion to this point
and introduces some additional terminology and notation.

Definition 1.1. A set is a well-defined collection of distinet ob-
jects. The individual objects that collectively make up a given set
are called its elements, and each element belongs to or is a member of
or is contained in the set. If a is an object and A a set, then we write
a ¢ A as an abbreviation for “a is an element of A"’ and a ¢ A for
“a is not an element of A.”” If a set has a finite number of elements,
then it is called a finite set; otherwise it is called an infinite set.

We are relying on the reader’s knowledge of the positive integers
1,2,3, ---, the so-called counting or natural numbers. This is an
infinite set of numbers. To say that a set is finite means that one
can enumerate the elements of the set in some order, then count these
elements one by one until a last element s reached. Let us note that
it is possible for a set, like the set of grains of sand on the Coney Island
beach, to have a fantastically large number of elements and never-
theless be a finite set.

A set is ordinarily specified either by (i) listing all its elements and
enclosing them in braces (the so-called roster method of defining the
set), or by (ii) enclosing in braces a defining property and agreeing
that those objects that have the property, and only those objects,
are members of the set. We discuss these important ideas further
and introduce additional notation in the following examples.

Example 1.1. The set whose elements are the integers 0, 5, and 12
is a finite set with three elements. If we denote this set by A4, then it
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is conveniently written using the roster method: 4 = {0, 5, 12}.
The statements “5 e A’ and “6 ¢ A” are both true.

Example 1.2. If we write V = {a, ¢, 7, 0, u}, then we have defined
the set V of vowels in the English alphabet by listing its five elements.
To specify V by a defining property we write

V = {z |z is a vowel in the English alphabet},

which is read “V is the set of those elements « such that z is a vowel
in the English alphabet.” Braces are always used when specifying a
set; the vertical bar | is read “such that” or “for which.” The symbol
z is of course merely a place-holder; any other symbol will do just as
well. For example, we can also write

V = {*| *is a vowel in the English alphabet}.

A slight modification of this notation is often used. Let us first
introduce the set A to stand for the set of all letters of the English
alphabet. Then we write

V = {xeA| *is a vowel},

which is read “V is the set of those elements * of A such that *is a
vowel.”

Example 1.3. The set B = {—2,2} is the same set as
{r e R | 2® = 4}, where R is the set of all real numbers. The set
{reR|2* = —1} has no elements, since the square of any real
number is nonnegative. But if C is the set of all complex numbers,

then {zeC|2? = —1} contains the elements z = V' — 1 and —i.

Example 1.4. A prime number is a positive integer greater than 1
but divisible only by 1 and itself. A proof of the fact that the set
{p | p is a prime number} is an infinite set was given by Euclid
(?330-275 B.c.) in the ninth book of his Elements. Strictly speaking,
the roster method is unavailable for infinite sets, since it is not pos-
sible to list all the members and have explicitly before one a totality
of elements making up an infinite set. The notation

{2,3,5,7,11,13,17,19, -- -},
in which some of the elements of the set are listed followed by three

dots which take the place of et cetera and stand for obviously under-
stood omissions of one or more elements, is an often used but logi-
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cally unsatisfactory way out of this difficulty. (See Problem 1.3.)
To specify an infinite set correctly, one must (as we did when we
introduced the set of prime numbers) cite a defining property of the
set.

Example 1.5. If a rectangular coordinate system (with z-axis and
y-axis) is introduced in a plane, then each point of the plane has an
z-coordinate and a y-coordinate, and can be represented, as in Figure
1(a), by an ordered pair of real numbers. In analytic geometry, one

I (6,6) /
A R

:::::::.::H: //
1(0,0) x x
[ ® (4: -3)

(=5, =5) C
(@ )
Figure 1

is interested in sets of points whose coordinates meet certain re-
quirements. For example, the set {(z,y) |y = z} is the set of all
points (in a plane) with equal z- and y-coordinates. This infinite set
of points makes up the straight line L, a portion of which is sketched
in Figure 1(a), passing through the origin O and bisecting the first
and third quadrants. We say that the line L is the graph of the set
{(z, y) | y = «}. Similarly, the entire z-axis is the graph of the set
{(z,y) |y = 0}, and the positive z-axis is the graph of the set
{(z,y) |z > 0and y = 0}. The set {(z,y) | * > 0 and y > 0} is the
set of points whose 2- and y-coordinates are both positive. Thus, the
graph of this set is the entire first quadrant (axes excluded), as indi-
cated in Figure 1(b).

We see that a relation (in the form of equalities or inequalities
between = and y) can be considered a set-selector, and the graph pic-
tures the set of those points (from among all in the plane) selected by
the requirement that their coordinates satisfy the given relation.
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Although it may seem strange at first, it turns out to be convenient
to talk about sets that have no members.

Definition 1.2. A set with no members is called an empty or null
set.

The set {x ¢ R |22 = —1} in Example 1.3 is an empty set. Another
example is obtained by considering the set of all
paths by which the line drawing of a house in
Figure 2 can be traced without lifting one’s pen-
cil or retracing any line segment. Whether this
set is empty or not is of some interest, since to
assert that it is empty is to say that the figure
cannot be traced under the prescribed condi-
tions. (Let the reader convince himself that this Figure 2
set is indeed empty.) As our work develops, we
shall see many other less frivolous reasons for introducing the no-
tion of an empty set.

We conclude this ground-breaking section with one more definition.

Definition 1.3. Two sets A and B are said to be equal and we write
A = B if and only if they have exactly the same elements. If one
of the sets has an element not in the other, they are unequal and we
write A # B.

Thus A = B means that every element of A is also an element of
B and every element of B is an element of A. Equal sets are identical
sets, and this identity is symbolized by the equality sign.

This definition has some interesting consequences. First, it is clear
that the order in which we list the elements of a set is immaterial.
For example, the set {a, b, ¢} is equal to the set {c, a, b}, since they
do indeed have exactly the same three elements.

Also, when sets are specified by defining properties, they can be
equal even though the defining properties themselves are outwardly
different. Thus, the set of all even prime numbers and the set of real
numbers z such that z 4+ 3 = 5 have different defining properties,
yet they are equal sets, for each contains the number 2 as its only
element.

Up to now, we have been careful to speak of a set having no mem-
bers as an empty set. But it is clear from Definition 1.3 that any two
empty sets are equal. For to be unequal it is necessary for one of the
sets to contain an element not in the other, and this is impossible
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since neither set contains any elements. Therefore we are justified in
referring to the empty set or the null set.* We denote the null set by
the special symbol 0.

PROBLEMS

1.1. We list eight sets. For each set, state whether it is finite or infinite.
If finite, count the number of elements in the set. Where feasible, write
the set using the roster method.

(a) The set of footnotes in Section 1.

(b) The set of letters in the word “probability.”

(¢) The set of odd positive integers.

(d) The set of prime numbers less than one million.

(e) The set of paths by which the following figure can be traced without
lifting one’s pencil or retracing any line segment:

3

Figure 3

(f) The set of those points (in a given plane) that are exactly five units
from the origin O.

(2) The set of real numbers satisfying the equation 22 — 3z + 2 = 0.

(h) The set of possible outcomes of the experiment in which one card
is selected from a standard deck of 52 cards.

1.2. The following paragraph was written by a student impressed with the

technical vocabulary of set theory. Rewrite in more usual English prose.

Let C be the set of Mr. and Mrs. Smith’s children. C' was equal to @

until March 1, 1958. C contained exactly one element from that date
until March 15, 1959 when it increased its membership by two!

* The following true story concerns the attempt of a well-known professor of
mathematics to teach his five-year-old son the subtle distinction between “a”
(or “an”) and “the.” One day the son answered the telephone, listened a moment
and then said, “I’'m sorry, but you have the wrong number.” (Isn’t this what
most of us say when someone dials incorrectly?) The father, having overheard,
immediately called the boy to him and gently instructed, “What you said would
be correct if there were exactly one wrong number. But since there are many.
possible wrong numbers, it would be more accurate to say, ‘I’m sorry, but you
have a wrong number.” ”’



