

MeGrawghill

RSONAE
MEBUMER
ROGRANMING
ENGYCEOREDIN

LANGUAGES AND OPERATING SYSTEMS

£)
C==3 nn

DLJ
=0

William J. Birnes, Editor

Nancy Hayfield, production Editor

McGraw-Hill Book Company

New Delhi Panama Paris San Juan Sao Paulo
Singapore Sydney Tokyo Toronto

McGRAW-HILL PERSONAL COMPUTER PROGRAMMING ENCYCLOPEDIA:
LANGUAGES AND OPERATING SYSTEMS Copyright © 1985

by McGraw-Hill, Inc. All rights reserved. Printed in

the United States of America. Except as permitted under

the United States Copyright Act of 1976, no part of this

publication may be reproduced or distributed in any form

or by any means, or stored in a database or retrieval

system, without the prior written permission of the

publisher. Philippines Copyright 1985 by McGraw-Hill, Inc.

1234567890 DODO 8921098765

ISBN 0-07-005389-8

Library of Congress Cataloging in Publication Data
McGraw-Hill personal computer programming encyclopedia.

Includes index.

1. Microcomputers—Programming. 2. Programming
languages (Electronic computers) 3. Operating systems
(Computers) 1. Birnes, William J. II. McGraw-Hill
Book Company.

QA76.6.M414 1985 001.64'2 85-135
ISBN 0-07-005389-8

MeGawgHill

RERSONAL
COMRUILER
RROGRAMMING
ENCYCIOREDTA

LANGUAGES AND OPERATING SYSTEMS

STAFF

Shadow Lawn Press

The Encyclopedia was compiled, typeset, and paged
by Shadow Lawn Press, Neshanic Station, New Jersey.

William J. Birnes, President and Project Editor
Nancy Haytfield, Production Editor

Dorothy L. Amsden, Art Director and Illustrator
William Thompkins, Technical Illustrator
Jeanne Neilson, Illustrator

Robin E. Sigmann, Layout

Victoria Boyle, Index

McGraw-Hill

Sybil P. Parker, Editor in Chief

Edward J. Fox, Art and Production Director
Joe Faulk, Editing Manager

Patricia W. Albers, Senior Editing Assistant

CONTRIBUTORS

Jonathan Amsterdam, Artificial Intelligence Laboratory, Massa-
chusetts Institute of Technology.

Henry F. Beechhold, Professor of English and Linguistics, Depart-
ment of English, Trenton State College.

David Dameo, Director of Computer Operations, RTK Computer
Services, Perth Amboy, New Jersey.

Michael lannone, Chairman, Department of Mathematics and
Computer Science, Trenton State College.

viii

CONTRIBUTORS

R. Claude Kagan, Research and Development, Western Electric;
Operating Systems Standards Committee, IEEE, Princeton.

Guy Kelley, Chairman, Forth-83 Standards Committee, Forth In-
terest Group, La Jolla, California.

Yong M. Lee, Professor of Mathematics, Department of Mathe-
matics and Computer Science, Trenton State College.

David Lewis, Department of Mathematics and Computer Science,
Trenton State College.

Len Lindsay, President, COMAL Users Group International, Ltd.,
Madison, Wisconsin.

Kenneth Madell, Software Developer and Programmer, Hamburg,
New Jersey.

Lawrence Mahon, Software Consultant and Marketing Represen-
tative, Computerland, Inc., Somerville, New Jersey.

Gary Markman, Software and Systems Consultant, Yonkers,
New York.

Norman Neff, Professor of Mathematics, Department of Mathe-
matics and Computer Science, Trenton State College.

Ross Overbeek, Research and Development, Argonne National
Laboratories, Lisle, Illinois.

Mark J. Robillard, Systems Consultant, Townsend, Massachusetts.

Al Rubottom, President, New Technica, Inc., San Diego, Cali-
fornia.

Max Schindler, Editor in Chief, Electronic Design; President, Prime
Technology, Inc., Boonton, New Jersey.

Stephen E. Seadler, President, Uniconsult, New York City.

Ernest R. Tello, President, Integral Systems, Santa Cruz, Cali-
fornia.

Michael Tilson, Director, Human Consulting Resources Corpora-
tion, Toronto, Ontario.

Charles R. Walther, President, New Century Educational Corpora-
tion, Piscataway, New Jersey.

Linda Weisner, Research Assistant, Department of English, Tren-
ton State College.

CONTRIBUTORS

Michael Whetmore, Professor of Mathematics, Department of
Mathematics and Computer Science, Trenton State College.

Robert Wharton, Professor of Mathematics, Department of Mathe-
matics and Computer Science, Trenton State College.

William Woodall, Software Specialist, Somerville, New Jersey.

PREFACE

The concept of personal computing had its beginnings in the late 1970s with
the assembly of the first microcomputers based on the technology of the inte-
grated circuit. The initial commercial success of the microprocessor-driven units
converged with the ongoing development of high-level computer programming
languages. The appearance of these languages in the 1950s took programming,
once a field open only to the engineers and designers who had originally devel-
oped computers, out of the laboratory and into the business marketplace. By the
late 1960s there were a number of high-level languages with applications in the
sciences, engineering, business, and even elementary and secondary education.
When the first BASIC interpreters were bundled with the new “personal com-
puter” packages in the 1970s, the two development streams were officially
joined, and the personal computing revolution began.

Over the next eight years, each success in personal computing technology
prompted a new surge of development. The machines themselves grew in power
and capability from 8-bit 16K PET computers with membrane-type keyboards
and onboard cassette recorders to the IBM PC-AT with its 20 megabytes of
hard-disk storage and true 16-bit speed. By the end of 1984, the LISA technol-
ogy developed by Apple for its 32-bit office machines was repackaged to appeal
to a home market and quickly caught on as the Macintosh. In a lockstep with the
development of new hardware systems was the invention of new software sys-
tems and applications programs. The BASICs of the 1960s and 1970s gave birth
to more powerful versions that had built-in graphics and music commands and
system utilities that allowed even novice programmers a sophistication and
efficiency of code that previously could only have been found in assembly
language routines. However, beyond BASIC, versions of Pascal, C, and Forth
were developed which put enormous programming power into the hands of per-
sonal computer users and allowed them to emulate the processing capabilities of
large mainframes at their desktop terminals. And this is only the beginning.
Languages such as Ada, the Department of Defense’s new projected standard
information-processing language, and Prolog, which is at the center of artificial
intelligence research and development, have recently been implemented on per-
sonal computers and will become more popular as succeeding generations of
more powerful computers find their way into the home and business markets.

This proliferation of computing language implementations has created a
serious need for a single reference volume which not only introduces the various
languages and indexes all of their command words and statements, but provides
for a cross-referencing of applications and a comparison of the languages’
capabilities. This is the purpose of the Personal Computer Programming Ency-
clopedia. The Encyclopedia illustrates the capabilities of each language with
overviews of the language’s design and architecture, and by comparing the
operational differences of each language through sample programs, the Ency-
clopedia demonstrates the different ways applications can be addressed by pro-
grammers working within the different language environments.

The Encyclopedia is divided into two types of sections: the double-column
sections which cover the high-level languges, operating system commands, and
assembly language commands, and the single-column sections which contain
background and introductory material. In the single-column sections, readers
will find articles which explain the architecture and design of computer pro-
grams, examine the user-oriented issues of software development in business

PREFACE

and education, and explore the newest areas of development in graphics, ro-
botics, and artificial intelligence. In choosing these different types of entries for
the Encyclopedia, recognition has been given to the major areas of personal
computing that affect users: (1) the need to understand the logic of program
design; (2) the current trends and issues in the most important areas of software
development; (3) the diversity of languages that are available to personal com-
puter users and the primary applications of these languages; and (4) the relation-
ship of hardware systems to software systems. The result is a volume that
addresses the needs of the entire personal computing community from the busi-
ness user and consumer of professional software products to the home user
learning about a type of information technology that promises to transform the
ways people organize their lives.

The Encyclopedia provides background histories of the high-level pro-
gramming languages, operating systems, and applications software cited. It
relates the development of these various software tools to the current comput-
ing environment as well as to the historical period during which the software
was originated and marketed. The result of this approach is a social history of
personal computing in which programmers, personal computer users, and
general readers will discover the underlying reasons for much of the product
development in the marketplace. The Encyclopedia explains the different
trends inlanguages, operating systems, and applications software over the past
five to ten years, and the effects of these products on users in different pro-
fessional fields.

The Encyclopedia contains an index to all of the keywords and statements
in the high-level languages that are cited. This index is an important reference
tool for programmers and serious users because it provides an immediate cross-
reference between the different languages. Programmers seeking to translate
source code from one compiler to another or from one dialect of BASIC to com-
piled or structured BASIC will find the cross-index a handy tool. General
readers interested in the history and intellectual backgrounds of programming
languages will find in the cross-index of high-level language keywords a generic
approach to the types of commands that are used in programming. Teachers
will also find this system a valuable reference tool for use in comparative
programming.

The Encyclopedia also examines the different corporate cultures from
which the most popular types of personal computers have evolved and eval-
uates the dynamic relationships between manufacturer and the manufacturer’s
product history, the hardware system and supporting software, and the user
market the computer was targeted to reach. Readers will find an interesting
perspective on the current trends of technological development in the areas of
hardware, software, and operating environments. There is a capsule summary
of the history of personal computers from the first attempts to market basic
user-assembled kits to the 32-bit supermicros that will be making their ap-
pearance within the next several years. Their history, brief as it is, will provide a
needed background to the dynamic microcomputer marketplace and the dif-
ferent products that are announced in the computer magazines and news-
papers.

PREFACE

The articles in the Personal Computer Programming Encyclopedia are
written by individuals from a variety of backgrounds. This diversity of opinion s
reflected in the different levels of emphasis within the entries and the broad
perspective of the volume in general. In short, the Encyclopedia embraces the
types of related informational materials that spread across the traditional bound-
aries often found in a reference book on science and technology. This is what
makes the volume an innovative reference tool.

While a number of computer dictionaries and comparative reference books
on programming languages have appeared recently, the McGraw-Hill Personal
Computer Programming Encyclopedia is the only single-volume reference to
provide a comprehensive introduction to the entire personal computing environ-
ment both as a science and as a commercial industry. Thus, it will become a valu-
able reference both for the computer professional and for the novice. Business
users, students, teachers, hobbyists, and home users will find this Encyclopedia a
most useful desktop computer reference.

William J. Birnes
Editor

MeGrawgHill

RERSONAT
COMRBUMER
RROGRAMMING
ENCYCIOREDIA

LANGUAGES AND OPERATING SYSTEMS

How to Begin to Program

DESIGN

r\ 7 ’;;\6\-\ P, _;
o &L

(<2
& — ——
= [=
=1\

PROGRAM

TR

Dorothy L. Amsden

CONTENTS

1
Program Design and Architecture 1
2
Principles of Effective Programming 15
3
Special Applications Software 29
Introduction to Integrated Software 33
Educational Computing and Computer Programming 45
Educational Computing Facilities Today 53
Microcomputer Graphics 63
Artificial Intelligence and Expert Systems 81
Robotics 111
4
Microprocessor Basics 129
Microprocessor Programming 150
Directory of Microprocessors and Instructions 163
Intel 8080A 165
Intel 8085 169
Zilog Z80 171
National Semiconductor NSC800 175
Motorola MC6800 180
Motorola MC6809 184
MOS Technology 6502 187
Texas Instruments TMS 9900 190
Intel 8088 194
Intel 8086 200
Zilog Z8000 203
Zilog Z8002 212
Motorola 68000 215
5
High-Level Programming Languages 227
Ada 235
Algol 244
APL 248
BASIC 255

MBASIC 86 280

CONTENTS

ZBASIC 286
Compiled BASIC 292
S-BASIC 296
Applesoft BASIC 301
Atari BASIC 303
TI Extended BASIC 304
C 308
COBOL 315
COMAL 322
Forth 326
PC Forth 340
Fortran 351
LISP 356
Logo 362
Modula-2 367
Pascal 373
Pilot 377
PL/1 381
Prolog 387
RPG 392
SAM76 400
Smalltalk 406
Software Command Languages 417
dBASE 11 419
VisiCalc 432
SuperCalc 436
MultiPlan 439
Lotus 1-2-3 443
Symphony 448
Framework 449
6
Operating Systems Directory 457
UNIX 460
MS-DOS 468
MS-DOS 3.0 470
PC-DOS 471
Z-DOS 474
Commodore DOS 475
XENIX 476
CP/M 479
Applesoft DOS 3.3 482
ProDOS 484
TRS-DOS 486
TRS-DOS 6.0 489
Macintosh Operating System 493
7

Microcomputer Systems Hardware 505

8

Major PC Products: Markets and Specifications

Glossary of Computing Programming Terminology

TRS-80 Model I and III

TRS-80 Model IT and 12

TRS-80 Model 4

CP/M Computers

IBM PC and Compatibles
Commodore PET/PET 2001/CBM
Commodore VIC-20 and C64
TRS Color Computer

Apple II Family

Apple Macintosh

Bibliography

Index of High-Level Language Keywords

Index

CONTENTS

539
543
544
545
546
547
548
549
550
551
552

555

639

651

681

PROGRAM DESIGN
AND ARCHITECTURE

As in most creative work, the fundamental aspect of writing good applica-
tions and systems programs lies in the preliminary design and architecture. It is
on this level that some of the most important thinking takes place. Goals are
defined, pathways are mapped out, logical relationships between data types are
developed, and the rules that will govern the decisions the machine will make are
stipulated. It is here, at the very heart of a well-designed program, that a defini-
tion of truth is implemented, and the execution of this program, the processing of
line after line of code, is a test for that truth. And as a statement of truth and a test
for that truth’s existence in the data that flows through it, the computer program
takes its place right alongside literature and art as a form of creative expression.
There is a practical creativity, to be sure, but a computer program s no less cre-
ative and structured in its disciplined expression of truth than a line of poetry by
Keats, a portrait by Albrecht Diirer, or a Bach concerto.

What takes placeinthe design and architecture of a computer program? On
the most obvious and visible level, it is a patient sequence of logic that expresses
the complexity of human thought in terms of an organized pattern of connected
decisions to be implemented ultimately as a series of electronic pulses. On an
even more fundamental level, it is nothing less than the definition of the reality
that the computer will understand as its truth. The design of a computer pro-
gram, therefore, is a microcosm of the physical universe, and as an amalgama-
tion of artistic creativity and technical precision, it is the marriage of C. P.
Snow’s “Two Cultures.”

The cho.ce of the actual programming language and the subsequent coding
of the program, while important, take place after the logic of the program has
been designed. Programming languages by themselves are only forms of ma-
chine code generators. By definition, they are a source of code that is either com-
piled or interp1=ied by the machine and translated into the sets of instructions
that the macnine can process. As a source of code, they help the programmer
implement a coherent and executable logical design and serve as a matrix for the
actual commands. In addition, high-level computing languages provide for the
definition of the types of data and, in some cases, particularly COBOL, the
specific machine environments. But, while an indicator of program efficiency,
the programming language is not, and should not be considered, the ultimate
indicator of quality. The best programs are good, not because they are written in
C rather than BASIC, or in LISP rather than Pascal, but because they are

2

Program Design

designed from concept through code to be disciplined and creative tests for
validity and truth.

As an implementation of a logical structure, the original programming
environments in the early days of digital computing were required to be designed
efficiently and completely because they were written on a machine level which
was unforgiving of mistakes. High-level languages, which were developed later,
were oriented more toward the natural language of speakers than they were
toward the opening and closing of electronic circuits. High-level languages
addressed compilers and interpreters which in turn generated the machine code.
As a result, high-level languages often have built-in mechanisms which, though
quick to trap errors in the usage and syntax of source code, can sometimes be
quite forgiving of fundamental mistakes in design and logic. And it is these hid-
den structural mistakes which ultimately surface in the program’s execution to
make debugging the program a seemingly impossible task. Therefore, all pro-
fessional computing training curricula, whether on a secondary school, college,
or vocational level, usually begin with a unit on program design and architecture.

But program design and architecture begin with an understanding of com-
monsense sequential logic. In other words, to design a program, an individual
need not have the actual high-level language code at his or her fingertips; rather
the person must understand fundamentally how the computer of choice will
operate and how to definelogically the complete task of the program from begin-
ning to end. It is this task definition and the realistic design of an operation from
beginning to end that is necessary in order to write a good program. Whether the
task is designing an opera, 1g system or writing a program to calculate the prin-
cipal and interest payments on a loan, the programmer begins with a list of items
the program must accomplish and ends with a chart showing the order in which
the program will do just that. This section will introduce you to the elements of
programming design and architecture from a programmer’s point of view and
will look at the elements of goal-setting, evaluating the programming tools to be
used, and the construction of a programming structure.

Principles of Program Design

In principle, designing a program is not different from approaching any
other task. We require a goal that is clearly defined because we need to know
what we want to accomplish, we require an understanding of our beginning
resources, and we must have a thorough understanding of the means we will use
to reach the goal. As an example, consider the act of going to work in the morn-
ing. The goalis to get to work. The beginning resource is your home. The means
to reach the goal is some form of transportation. The only difference between
this process and the process of writing a computer program is that there’s no
need to make any part of the task of getting to work in the morning a conscious,
consistent, and repetitive test for truth every day. However, how would these
actions appear without a goal? Your normal activities such as waking up at
6:30, getting dressed in work attire, going to the train station, and so on, would
seem silly indeed if you performed them on a Sunday morning or a holiday. The
point is that most of the things we do need a goal in order for the actions to have
any meaning. Designing a program is no exception.

Probably the least practical way to begin writing a computer program is to
sit down at your computer and start writing code. Many beginning program-
mers, eager to see results, will do just that. The result is usually very awkward
and inefficient code, poor documentation, and an absolute nightmare when
debugging time comes (and it always does).

The three steps named above—goal, beginning resources, and means—are
essential in the design of a good program. And the first language any beginning
programmer should consider using is not BASIC, Fortran, Pascal, or COBOL,
but rather English. Specifically, the way to begin writing a program is to identify

