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PREFACE

The material covered in this volume is intended to complement and
extend the material in Fundamentals of the Computing Sciences. It is

divided into four sections:

Introduction to FORTRAN
Introduction to SNOBOL

Advanced Topics

o 0 w >

Solutions to the Exercises

As a companion to the basic text, it is designed to provide coverage of
the languages used there and to extend a number of the topics covered.
The contents of each section and the relationship of that content to the
main text are summarized below. Each of the sections is self-contained
and may be used independently of each other.

The language sections (A and B) are basic introductions to FORTRAN
and SNOBOL, respectively. The level of these introductions is sufficient
to provide the background necessary to understand the programs in the
text and to do the exercises. In the case of the FORTRAN section, the
presentation conforms to ANSI Standard FORTRAN; deviations from the
standardized language are clearly marked as such, for example, the
processing of non-numeric information. For SNOBOL, the presentation
follows closely the SNOBOL4 language as described in Griswold, Poage, and
Polonsky, The SNOBOL4 Programming Language, 2nd Edition (Prentice-Hall,
1971). Since each section is designed to follow the text, certain fea-
tures of the languages may be emphasized more heavily than others; examples
tend to emphasize features useful for understanding the main text. These
sections can be used to provide the basic material for a programming
laboratory accompanying the main course, and can be supplemented with ad-
ditional material and/or local programming manuals.

The Advanced Topics section extends a number of chapters in the
main text to more advanced material, parts of which require some mathe-
matical maturity. The structure of this section follows the structure
of the text; sections are numbered according to the chapter and section

in the main book to which they pertain. In some sections derivations of

xi



results stated in the text are provided, while in others new material is
presented. In many cases, natural extensions of the material covered here
may be used as the basis for group projects.

The solutions to a large fraction of the exercises presented in the
text are provided in the final section. In most cases, a complete solution
is given; in others, solutions are either started or hints are given as to
how to start.

Appendix 1 lists the ASCII character set and control codes, along with
their decimal, binary, and octal equivalents, Appendix 2 contains a summary
listing of the procedures, algorithms, and programs appearing in this

volume and the main text.

KURT MALY
ALLEN R. HANSON

xii



Table of Contents for Supplemental Manual

The FORTRAN language and the FORTRAN compiler,
A short history of FORTRAN, standard FORTRAN.

Card image, character set, language elements

Constants, simple variables, compound variables

Structure of expressions, operators, precedence

Statements providing information to compiler,
structure of variables, types of variables,
notion of locations, values of variables

Unconditional transfer of control, iteration,

Input/Output devices, communications with
devices, format specifications, implied

PART A Introduction to FORTRAN
A.0 A Historical Perspective .
A.1 FORTRAN: An Overview.
A.2 FORTRAN Language Elements.
A.3 Expressions and Basic Statements .
of operators, assignment statement
A.4 Specification Statements
A.5 Control Statements
conditional transfer
A.6 Input/Output Statements.
iteration, editing specifications
A.7 Program Segmentation .

A.7.1 FORTRAN Functions
Library functions, function subprograms
A.7.2 Subroutine Subprograms.

A.7.3 Module Communication and Data Manipulation.

14

18

26

42

42

49

51



A.8

A.9

Summary of FORTRAN .

Implementation of the Major AL Control Structures in FORTRAN

A.10 Processing of Nonnumeric Information in FORTRAN (Nonstandard)

Numbers as symbols, operations on bit strings,
shifting, masking, string manipulation

A.11 Conclusions.

References.
Exercises
" PART B Introduction to SNOBOL

B.0 Introduction: A Historical Perspective.
Language classifications, strings, lists, SNOBOL4,
COMIT, LISP, extensible data structures

B.1 SNOBOL4: An Overview.
Card image, character set, annotated example
program, SNOBOL4 programs

B.2 Language Elements.
Variables, strings, integer and real numbers,
patterns, arrays, tables, programmer-defined
data types, arithmetic expressions

. w;’f.")_, L

B.3 Concatenation of Striﬁgs'rf; .
Concatenation operator; concatenation and
numerical strings

B.4 Input/Output Operations.
INPUT/OUTPUT operators, side effects, reading
and writing data

B.4.1 Keywords.
B.4.2 1I/0 Variable Association.
B.5 Transfer of Control and the General SNOBOL Statement

Format of the general SNOBOL statement

vi

56

60

66

72

73

73

75

76

80

84

86

88

88

89



B.6

B.7

B.8

B.5.1 Structure of the SNOBOL4 Program.

Card image, statement continuations,
comments, deck structure, program termination

B.5.2 The SNOBOL4 Control Structures.

The nature of control primitives, labels,
transfer of control, evaluation order of a
SNOBOL statement, statement failure.

B.5.3 Predicates.

Numerical predicates, object predicates

B.5.4 Primitive String Functions.

Pattern Matching .

B.6.1 The Pattern-Matching Process and Pattern Primitives
Pattern construction, concatenation,
alternation, scanner, bead diagrams,
modes of matching, string replacement,
conditional and immediate assignment

B.6.2 Primitive Pattern Functions

B.6.3 Unevaluated Expressions

Function Definition.

Programmer-defined functions. awrguments, scope of
variables, function reference. tecursive functions

SNOBOL4 Data Types

B.8.1 Arrays.
Array definition, initial values, sub-
scripting, array sizes, element names,
COPY and PROTOTYPE functions d

B.8.2 Indirect Referencing.

B.8.3 Tables.

Table definition, storage of tables,
references, conversion to arrays

B.8.4 Programmer-Defined Data Types

Data structure definition, fields, data
references, binary tree sort

vii

90

93

96

99

100

100

108

112

114

117

117

121

124

127



B.9 Summary of SNOBOL4

B.10 Implementation of the Major AL Control Structures in SNOBOL.

B.11 ConclusionsS. . . « « «v v v o v v v o o« o .
References.

Exercises .

PART C Advanced Topics

Chapter 1

1.4.1 The Euclidean Algorithm .

1.4.2 The Halting Problem for Turing Machines
Reference .
Chapter 4

4.4.1 Continuation of Example 4.5

Application of divide-and-conquer technique
to power evaluation

4.4.2 Preprocessing of Input.
Repeated function evaluation, formulation of
equivalent functions, matrix multiplication,
polynomial evaluation, p-ary method for
power evaluation

4.4.3 Dynamic Programming .

Multistage decision system, shortest path
problem

References.
Exercises
Chapter 5
5.4.1 Multidimensional Search .
Searching in two dimensions, points and lines,
0(logon) algorithm based on preprocessing,
post office problem

5.4.2 The n logyn Rule.

Derivation of a lower bound on the optimal
key comparing sorting algorithm

viii

131
133
136
137

138

140
140
140
143
143

143

148

158

166

166

168

173



5.4.3 Rearrangement of Records in Place . . . . . .

5.4.4 A Descendant of the Insertion Sort.

The Shell sort

5.4.5 Selection Sorts and Their Descendants . . . . .

Backward induction--simple selection sort,
divide-and-conquer--Heapsort

References. . .
Exercises
Chapter 6 .

Bounds on propogation error, propogation in compound

operations.

6.4.1 Propogation Error: Derivation of Bounds

6.4.2 Propogation in Compound Operations: Derivation of

Bound .
Chapter 7 .

7.3.1 Derivation of Formulas.

Newton-Raphson iteration scheme, the Lagrange
interpolation polynomial, Newton-Cotes formulas
for integration.

7.3.2 Systems of Linear Equations . . . . . . . . . . . . .
Transformation techniques: triangularization,
back substitution, Gaussian elimination, unstable
systems, pivoting; iterative techniques: Jacobi
iteration scheme, error bounds, complexity.

References.
Exercises
Chapter 8

A mathematical model of a simple computer system, multi-
programming, batch system, multiplexing, queues, system

parameters.
Chapter 9 .
9.4.1 Queues in a Simulation Model.

ix

175

178

182

186

186

186

189

190

192

192

199

218

218

219

222

222



9.4.1 Queues in a Simulation Model. . . . . . . . . . . . 222

Discrete event simulation, simple computer
system model.

9.4.2 Sparse Matrix Representation . . . . . . . . . . . . 229

Sparse matrices, operations on sparse matrices,
sequential and linked representations.

9.4.3 Parsing of English . . . . . . . . . . . . . .« .. 234

Languages, grammars, BNF form, parsing

References . . . © v v v v v v e e e e e e e e e e e e e e e e 240
EXErcCiSesS. . v v v v v v v e e e e e e e e e e e e e e e e e e 240
"PART D Solutions to Exercises . . . . . . « v v v v v v v o« . 241
Appendix 1 . . . . . . L L 0 L o e e e e e e e e e e e e e e e 325
Appendix 2 . . . . i i 4 i e e e e e e e e e e e e e e e e s e 327
INDEX . . . i i i e e e e e e e e e e e e e e e e e e e e e e e e 332



PART A INTRODUCTION TO FORTRAN

A.0 A Historical Perspective

Unlike AL (cf. Chapters 1-3), which was not specifically designed as a
computer language, FORTRAN (from FORmula TRANslation) is an actual program-
ming language, whose name refers to two distinct entities. The first of
these is the language itself, comprising the set of instructions and their
meanings. The second is the compiler, which is a program that accepts as
input FORTRAN programs and which produces as output an equivalent set of
machine language instructions which are directly executable on the specific
computer being used. In this sense, the compiler is equivalent to the Turing
machine programs underlying AL; it provides the semantics of the FORTRAN
statements. It is an interesting fact that not only is FORTRAN one of the
most widely used programming languages today but also almost every computer
that has ever been built has included FORTRAN in its software library. As a
result, the term FORTRAN is actually a generic name, representing many dif-
ferent, though markedly similar, languages. There are many dialects of
FORTRAN, almost as many as there are computing installations since all make
some changes to the basic language. As a result, programs written in
FORTRAN at one installation often do not run at another installation. Fur-
thermore, the restrictions on what can and cannot be done in the language
differ from installation to installation. To understand these differences,
and the very nature of FORTRAN itself, it will be instructive to digress for
a moment and consider the historical development of programming languages,
particularly FORTRAN.

The computer was developed during the 1940s as the result of a need for
devices which would carry out the solutions to numerical problems. These
problems were characterized by vast numbers of repetitive operations and very
little input/output. The first computers were programmed in the language of
the machine itself, often binary sequences representing instructions and
data. As we have seen from the considerations of Chapters 1 and 2, such a
language is not ideally suited for human use; a single misplaced digit in one
of the sequences is sufficient to destroy program functioning. It was a rea-
sonable quest to consider methods by which communication between man and
machine could take place at a level more suited to the needs of the human,
rather than the machine. As a result, several projects were begun to develop
symbolic programming languages.

Early in the 1950s, such a project was begun at IBM under the direction
of John Backus. In 1956, the first reference manual describing the FORTRAN
language for the IBM 704 was released; shortly after, the first commercial
version of FORTRAN was made available. This was followed by FORTRAN II in
1958. For the IBM 704, FORTRAN II contained some additional features, most
notably subroutines and functions (procedures). After an initial period of
skepticism and hostility, the concept of FORTRAN caught on, and other manu-
facturers began supplying versions of FORTRAN for their own machines. Soon
FORTRAN became generally accepted and widespread. It is interesting to note
that since FORTRAN was reasonably easy to learn and use, and since it did not



require an intimate knowledge of the machine on which it ran, the use of
languages such as this extended access to computers to scientists, engineers,
and computer specialists alike.

Because of the rapid proliferation of FORTRAN, little thought was given
to standardization; however, in the early 1960s the state of affairs had
gotten out of hand. A committee was formed to standardize the basic features
of the language and provide some semblance of machine independence. In 1962,
a report was released describing a language now known as FORTRAN IV (a ver-
sion of FORTRAN known as FORTRAN III had a very short life). 1In 1962, the
American Standards Association (ASA) standardized two versions of FORTRAN,
known as FORTRAN and Basic FORTRAN, such that Basic FORTRAN formed a proper
subset of FORTRAN. This means that any Basic FORTRAN program will execute
under a FORTRAN compiler (but not vice versa). FORTRAN as we know it today
corresponds to FORTRAN IV, while Basic FORTRAN is roughly equivalent to
FORTRAN II.

An important point to consider is the structure of a computing system as
it existed during the formation of FORTRAN. A computer installation typical-
ly consists of the computer proper (including the central processing unit,
arithmetic unit, and main memory) and various peripheral devices. The pe-
ripherals usually consist of input/output and bulk storage devices. Typical
I/0 devices include card readers and card punches, high-speed line printers,
and teletype terminals of some kind. Bulk storage devices consist of magnet-
ic tape units, magnetic drums, and others. Modern computer installations are
considerably different in terms of device technology and type, but this sim-
ple model will suffice. As a result of this structure, FORTRAN was very
early locked into an instruction set which represented those operations nor-
mally required by the complement of their available peripheral devices. Con-
sequently, FORTRAN at times appears considerably out of touch with modern
developments, particularly time-shared computer systems. On the other hand,
it is remarkable how successful the language has been and how adaptable it
has become.

A.1 FORTRAN: An Overview

The FORTRAN which will be presented in this chapter is the standard
FORTRAN mentioned in the previous section. In any actual programming lan-
guage, the programmer must make concessions to the structure of the machine.
Usually these concessions include a fixed format for program statements, a
restricted alphabet, and a small set of statements from which to build up
programs. In addition, the types of data which may be used and the ranges of
each are very often fixed. For example, the maximum and minimum integer
values that can be stored are a function of the word size of the particular
machine which will be used to execute the program. Word size refers to the
number of bits an addressable memory location in the machine contains. Once
these concessions become familiar, they do not present any real obstacle to
the development of programs for a specific problem. They may, however, re-
quire us to alter the algorithm developed in order to translate it into a
program.

Firmly embedded in the structure of FORTRAN is the idea of a card image.
All program statements and data must be tailored to fit this concept. This
restriction is not surprising since FORTRAN was originally developed as a



batch language; all programs which are to be run on the computer are in the
form of card decks. These decks are submitted to the computer in batches--
hence the name. A large percentage of modern computing is still batch ori-
ented. Figure A.l1 illustrates the standard FORTRAN punched card with the
FORTRAN character set punched; this character set contains the 26 capital
letters, the 10 digits, and the characters +, -, *, /, (, ), =, .(period),
, (comma), blank, and §. The card itself is 80 columns wide, each column

can contain one symbol from the character set.
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Figure A.1 The Punched Card

The holes in the card represent the code assigned to the symbol in that
column. The holes are sensed by the card reader and converted to a sequence
of electrical pulses which are sent to the computer. The printing on the
top of the card is of no importance to the computer; it is only for our con-
venience. Certain groups of columns have significance. Columns 1-5 are
reserved for a statement label, similar to the transfer addresses in the
Turing machine language, which serves to uniquely identify the FORTRAN state-
ment contained on the line if we so desire. Each statement label is an un-
signed positive integer of from 1 to 5 digits. If the first column contains
a C, then the remainder of the card is treated as a comment and is ignored
by FORTRAN; this corresponds to the /* ... */ delimiters in AL. In the event
a statement requires more than one card, it may be continued onto the next
card by writing a nonzero, nonblank character in column 6 of the continuation
card, up to a total of 19 continuations. The group of columns beginning at
column 7 up to and including column 72 is reserved for the FORTRAN statement.
In this field, blanks are completely ignored (with certain exceptions which
will be discussed later); however, inclusion of blanks makes the statements
more readable; hence, they always should be used to punctuate words and the
like. Columns 73-80 are completely ignored by the FORTRAN compiler; they
are commonly used for program identification and card sequencing. There are
multiple horror stories concerning several 1000-card FORTRAN programs being
accidentally dropped and shuffled without any practical way of restoring the
order. Therefore, it is advisable to use these columns to number the cards
sequentially.



When describing a programming language, there are two general categories
of facilities which must be considered. One of these concerns the data types
allowed by the language (e.g., integers, real numbers, complex numbers) and
the ways in which the data may be structured (e.g., simple objects such as
constants and compound objects such as n-tuples, tables). The second con-
cerns the set of instructions and operators included in the language and
their relation to the data types supported. One convenient format for the
exploration of a language is to partition the instruction set into sets of
logically equivalent instructions. Pursuing this format, we shall consider
the following distinct sets in the listed order:

1. The language elements: These include the types of constants al-
lowed, the definition of a variable, and the kinds of data
structures supported.

2. Expressions and basic statements: Here we consider the structure
of allowed expressions, the operators provided, and the hierarchy
of operators.

3. Specification statements: Some statements in FORTRAN are not lan-
guage elements as such; rather, they provide information to the
FORTRAN compiler concerning the structure of variables, their types,
locations, etc.

4. Control statements: These statements are the ones which provide us
with control over the sequence of execution of statements. Normally
execution is sequential beginning with the first statement in the
program. Control statements allow us to alter this implied sequence.

5. Input/output statements: These provide means for communications be-
tween the program and the outside world.

6. Program segmentation: FORTRAN provides a variety of means for seg-
menting programs, including subroutines and functions.

7. Miscellaneous features: Many installations provide extensions above
and beyond the standards set forth in the ASA definition of FORTRAN.
We shall make an effort to studiously avoid such features, except
when necessary.

A.2 FORTRAN Language Elements

The most primitive element in any programming language is the constant.
Since different types of constants are represented in a different manner in-
side the computer, the different kinds of data types to be allowed have to be
defined; they are

INTEGER

REAL

COMPLEX (1)
DOUBLE PRECISION

LOGICAL



All constants (and, as we shall see, all variables) are required to be one of
these five types. Each type has specific characteristics. The ranges of
values for the first four types in (1) are not defined within FORTRAN proper
but depend on the computer on which a FORTRAN program is to execute. They
can, however, be expressed in terms of computer-dependent parameters.

1. Integer comstants: An integer constant is a string of digits, with-
out a decimal point, immediately preceded by a sign: + (optional)
or - . The range of admissible values is usually expressed as

o < 1
ml._?,S?Zl

where mi1 and »n1 are positive integers. For a machine with 48 bits
per word of storage, typically

since one bit is reserved for the sign.

2. Real constants: A real constant is represented as a string of dec-
imal digits containing an embedded decimal point with a preceding

sign: + (optional) or - . Examples of real numbers are
-.874563 2345672.98674625
1.67843 .00008623
100. -78.987
+100 -1.0

An alternative representation of real numbers is permitted: a real
number as defined above, followed by the letter E (for exponent),
followed by an integer constant. This is called the engineering
(or scientific) representation; examples include

-28.3546E-10 +98.E7
1.E2 -98.E-7
.00089E93 -98.E+7
-9.457E+23 +98.E+7

To provide a uniform description of real numbers, every real number
is represented in terms of a mantissa and an exponent. The mantissa
of any real number is composed of the relevant digits of the number
preceded by the decimal point. The exponent is the number of places
this decimal point must be shifted to obtain the number. For exam-
ple, let the number be 256.12; the mantissa is then .25612, and the
exponent is 3 since

25612 * 10° = 256.12

Using this representation, the range of real values may be described

using the three parameters Mys Moy and t:

5



-m < exponent < n
] & %P & Ty

number of relevant digits = ¢

3. Complex constants: A complex number is represented conceptually as
x + 1y where x and y are the real and imaginary parts, respectively.
A complex constant is represented as two real values enclosed in
parentheses and separated by a comma. The range of each part of the
complex number is the same as the range of a real constant; examples
include

(1.3,-78.99) representing 1.3 - 278.99
(3.8E-1,.85) representing .38 + .85

(-8.,+6) representing -8. + 76.

4. Double precision: In some applications, the range of real values
may be too small; inclusion of the double precision type allows us
approximately to double the range of the real constant. In other
words, type double precision provides a mantissa of approximately
twice the number of relevant digits as that of a real number. When
double precision numbers are written in engineering notation, the
exponent symbol (E) is replaced by a D. Numbers of fewer than a
minimum number of digits must contain the D in order to distinguish
them from ordinary real constants. Examples are

98.85D0

9856362547.67483 (minimum number of digits for standard

notation is machine dependent)
.8746D-8

5. Logical: The range of values for the type logical is computer in-
dependent and consists of only the two values:

.TRUE.
.FALSE.

Variables in FORTRAN are similar in concept to AL variables, though
highly restricted. They are the symbolic names given to a quantity which
may change in value during the execution of a program. The value assigned
to a variable must be one of the five types discussed above; the concept of
a variable type is then well defined: integer variables may be assigned in-
teger values, real variables may be assigned real values, etc. In addition
to the type of a variable, we must take into consideration the different
structures which a variable may have. FORTRAN allows both the simple vari-
able whose value at any instant is a single constant (which may be computed)
and the compound variable whose value is actually a set of values, each of
the same type. The only compound variable which FORTRAN allows is the
multidimensional array with from one to three dimensions. A one-dimensional
array is similar to the tuple, a two-dimensional array corresponds to a
table, while a three-dimensional array is best visualized as shown in Figure
A.2. A compound variable is also known as a subscripted variable. As we
shall see in Section A.4, various information concerning the types of



