aeery

i,

SO YTV

00 2 g 408
GO

THL e

..:.

LR LT AA
Vet hifdaeess

I T
L0

aas«....:-:.:...o
:.,.m:::.:..:.
M

S

eh s
UL
[
ALL]

¥
LU

LA LT RO A A%

.
R ey
TeeereNgse

L ETY

s itesny
Flana'sy
e LG
AL L LA
-.-ﬂq...

i 2418y
1 Lo a0

G

L)
AL oo e
AT T 1 1)
X ARLY LT
Akl adais

Y

9161849

Data Structures

) ‘
L] ”é
% ,.‘V-\: ’ A

RICK DECKER

* Hamilton College
Clinton, New York '

. A : “L
" : N
“ : “““ I e
L » (& Vét
; .] . '7“‘

E9161849

|

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data:

Decker, Rick .
Data structures / Rick Decker.
p. cm. :
Includés index.
ISBN 0-13-198813-1

1. Data structures (Computel: science) 1. Title.

QA76.9.D35D43. 1989

005.7'3—dc19 88-37633

Editorial/production supervision and
interior design: David Ershun
Cover design: Diane Saxe

Cover art; Thomas Cole: The Voyage of Life: Youth, 1840, OQil on canvas,
521/2 x 78'/2 inches. Credit: The Munson Williams Proctor Institute

Museum of Art, Utica, New York.
Manufacturing buyer: Mary Noonan

= © 1989 by Prentice-Hall, Inc.
= A Division of Simon & Schuster
= Englewood Cliffs, New Jersey 07632

Al rights reserved. No part of this book may be

reproduced, in any form or by any means, " ’

without permission in writing from the pblish:

0
A

Printed in the United States of America

109 87 65 4321

ISBN 0-13-198813-1

CIP#

PRENTICE-HALL INTERNATIONAL (UK) LIMITED, London

PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney

PRENTICE-HALL CANADA INC., Toronto
PRENTICE-HALL HISPANOAMERICANA, S.A., Mexico

PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi

PRENTICE-HALL OF JAPAN INC., Tokyo
SIMON & SCHUSTER AsiA PTE. L™., Singapore

EDpiToRIA PRENTICE-HALL DO BRASIL LTDA., Rio de Janeiro

Preface

The overwhelming majority of authors have very little to say.

- If we suppose, rather charitably, that in a typical book of fifteen chapters
there are only eight passages worthy of quotation, then simple

mathematics will convince us that in short order there will be no original
quotations left for chapter headings. The implication is obvious. ...

ARMAND BLAGUE, How to Write

Over the years, I’ve had a number of students who have said, in one form or another,“I
want to be a computer scientist because I really like programming and am very good at
it.” Of course, computer scientists, both novices and seasoned veterans, are often called
upon to write programs, but to equate computer science with programming is to confuse
the product with the process. Being an excellent draftsman who can faithfully represent
a scene on paper is no guarantee that your works will eventually hang in the Metropol-
itan Museum. It’s a step in the right direction, but an artist must also have an intimate
familiarity with the more general principles of composition, persepctive, color, and so
on.

In essence, programming is little more than the efficient management of a parti-
cular kind of large intellectual process, and the guidelines for good programming -are
nothing but the application of commonsense principles that apply to any complex
creative task. It goes without saying, however, that before you can think efficiently you
must have something to think about, which for our purposes means that in order to
write good programs, you must have an idea about how information may be represented
in a program.

Computer science is a young discipline, byt it has developed enough over the past
few decades that there is a growing consensus about what should constitute the core
data structures. In this book, I tried to capture this core by providing what might be
called the *“classic” data structures, the most commonly applied mecthods for

xii Preface

representing information in a computer program, along with the algorithms for manipu-
lating this information. In terms of something to think about when thinking about pro-
gramming, you have here a collection of tools that should be part of the working
knowledge of any programmer.

This book is not about programming, however. Computer science is a science and,
in common with other sciences, consists in the main of seeking a theoretical framework
that can be used to describe the behavior of the objeqts it studies—in our case, com-
puters and their programs. One of the themes that determined the form of the book is to
provide a broad view of what a data structure really is. I have taken the approach that
data structures are not just a collection of ad hoc declarations and procedure definitions,
but, rather, that any data structure is a particular instance of an abstract data type,
which consists of (1) a set of objects, with (2) a common logical structure defined for
each of the objects, along with (3) a collection of structure-preserving operations on the
objects.

I chose to define the structure of an abstract data type by specifying a structural
relation on each set of positions. Doing so provides a natural progression of the
chapters, where each new abstract data type is introduced by removing some of the
structural restrictions from a prior type. Thus, we begin with lists, whose structure is
defined by a linear order, and progress to trees by removing the requirement that each
position have a unique successor, then to directed graphs by removing the requirement
of unique predecessor, then to sets by removing all restrictions on the structural relation.
Throughout this process, we see that each new abstract data type still can be described
by the threefold view of a collection of sets with a structural relation and a collection of
operations on those sets.

THE AUDIENCE

Though I did not set out to tailor this book to any preexisting curriculum, it turned out
that it covers essentially all of CS2 and part of CS7, as described in the ACM Curri-
culum '78, and a subset of the union of CS2 and CO2, set forth in Norman Gibbs's and
Alan Tucker's 1985 Model Curriculum for a Liberal Arts Degree in Computer Science.
The material contained here should be covered early in any computer science curri-
culum, and I wrote this book for an audience of first- and second-year students in com-
puter science who were familiar with a high-level language such as Pascal. A course in
discrete mathematics is desirable as a pre- or corequisite for this material, but the
relevant mathematical background in relations, probability, and other topics is summar-
ized in the appendixes for those who need it.

THE CONTENTS

My intent was to write a book that could be used as the basis for a semester-length
course in data structures or advanced programming. Realizing that the subject matter of

Preface xili

this ook comes at an early stage in the education of a computer scientist, I included a
number of mentions, necessarily brief, of somg of the interesting topics that await the
student down the road. Most of the canonical sorting algorithms are covered. along with
mentions of computational complexity, compiler design, unsolvable problems, NP-
completeness and the fundamental paradigms for algorithms.

Chapters 1 and 2 form the introduction of the text. Chapter | covers the necessary
preliminaries, such as program design, the definition of an abstract data type. a review
of Pascal-based pseudocode and pointers. big-O estimates. and the notion of timé and
space estimates. Appendix A, on relations. provides a more detailed study of the ma-
terial of Chapter 1. Chapter 2 is typical of subsequent chapters. in that we introduce an
abstract data type, STRING. describe how it may be implemented, compare the imple-
mentations, and provide extensive application, in this case the Boyer-Moore string-
matching algorithm.

In Chapters 3 and 4 we continue the investigation of linear data structures.
Chapter 3 covers lists, along with related list-like structures such as doubly linked lists,
sorted lists, and braids, and concludes with a discussion of memory management.
Chapter 4 covers the rest of standard linear structures, stacks and queues, motivating
these by applications to manipulate postfix expressions. Since a considerable amount of
queue applications involve simulation, Appendix C would be appropriate at this point.

Chapter 5 provides a segue into nonlinear structures by providing an introduction
to recursion and recursively defined data structures. Timing estimates for recursive algo-
rithms are covered in depth, along with an introduction to LISP. Appendix B covers
logs and exponentials, induction, and elementary combinatorics, and would be ap-
propriate supplementary material at this stage.

Chapters 6 and 7 ‘cover trees. Chapter 6 provides the necessary background on
binary trees and their implementations, traversal algorithms, treesort and heapsort, and
discusses minimal-length codes and tries. Chapter 7, which could be omitted if neces-
sary, covers two extensions of binary search trees, namely AVL trees and B-trees.

Chapter 8 could also be optional. It covers graphs and digraphs, along with a
representative sample of graph algorithms for traversal, spanning trees, minimal-cost
paths, minimal spanning trees, and an introduction to complexity theory through the
Traveling Salesperson Problem.

Chapter 9, on sets, describes bit vector and list implementations of sets, as well as
dictionaries, and provides a comprehensive introduction to hashing. The last section of
Chapter 9 discusses the UNION-FIND data structure, and could be omitted, if worse
came to worse.

In Chapter 10 we consider a problem of regenerating text from a large sample and
trace the development of programs to solve this problem, using a real com-
puter/compiler System to show how time and space constraints arise in practice from
choices of data structure.

ACKNOWLEDGMENTS

Stephen King will probably make more money from his next book than I'll see in the
rest of my life. It’s worth every penny, folks: writing is just plain hard work. A lot of

xiv . Preface

people deserve praise for seeing this book of mine through to completion. Thanks go to
my colleagues for reading advance copies, especially to Peter Allen of Columbia
University, Brian Kernaghan of AT&T/Bell Labs, and Seymour Pollack of Washington
University for their review of the manuscript; to my students for catching the countless
errors in the earlier versions; to Eloise Starkweather for producing a cover that knocked
my socks off; to the nice folks at Prentice Hall for being so tolerant of my first effort
with them; and especially to my family and friends, none of whom will ever read Data
Structures, but all of whom were supportive and understanding when I came dragging
in after a long day’s work.

Contents

Part 1

PREFACE xi
INTRODUCTION o 1
PRELIMINARIES + - o 3

1.1 Program Design: Algbrithms and Data Strutures 4

Algorithms 4
Data Structures . 6

1.2 Abstract Data Types: The Threefold Way 9
Relations 11

1.3 Pseudocode and Pointers 15
Pointers 16

1.4 Compléxity Measures 20 s o

Big-O 20
Order Arithmetic 22
Timing Functions 24

1.5 Summary 28
STRINGS . : 34

2.1 The Abstract Data Type STRING 34
2.2 Array Implementations of STRING 39

. Static Arrays 39
String Tables 43

2.3 Pointer Implementation of STRING 48
2.4 Application: Pattern Matching 54
2.5 Summary 60

vi Contents

-

Part2 LINEAR STRUCTURES | 65
3 LISTS RO 67

3.1 The Abstract Data Type LIST 68
3.2 Implementations of LIST 71

Arrays 71
Linked Lists 73
Cursors 77

3.3 Other List Structures - 80

Two-Way Lists 81
Sorted Lists 82
Braids 86

3.4 Application: Memory Management 87

Allocation 88
Deallocation 91
Compaction 95

3.5 Summary 108

4 OTHER LINEAR STRUCTURES 114

4.1 The Abstract Data Type STACK 114

Array Implementation of STACK 118

Stacks as Linked Lists 119

Application 1: Postfix Arithmetic 121
Application 2: The Electronic Labyrinth 123

4.2 Queues 127

Array lmplemématiohs of QUEUE 128
Pointer Implementation of QUEUE 130

4.3 Application: Infix to Postfix Conversion 132
4.4 Summary 134

Part3 NONLINEAR STRUCTURES | 141

Contents

5 RECURSION

5.1 Recursive Algorithms 142

Induction and Recursion 148
Timing Recursive Algorithms 149

5.2 Case Study: Design of Algorithms 154

5.3 Recursive Data Structures 159
General Lists and LISP 161

5.4 Summary 167

6 TREES

6.1 The Structure of Trees 175
6.2 Binary Trees 179
6.3 Binary Tree Traversals 182
Application: Parse Trees 186
6.4 Implementations of BINARY TREE 189

Pointers 189
Threaded Trees 191
Cursors 195

6.5 Data-Ordered Binary Trees * 197

Binary Search Trees 198

Application: Treesort 204

The PRIORITY QUEUE ADT and Heaps 205
Application: Heapsort 210

6.6 Two Applications of Trees 212

Huffman Codes 213
Tries 216

6.7 Summary 219
7 SPECIALIZED TREES

7.1 Balanced Trees 226
7.2 B-Trees 233

k-ary Trees, Again 234
B-Trees, Explained 235
Application: External Storage 244

7.3 Summary 248

vil

142

174

225

viii

Contents

8 GRAPHS AND DIGRAPHS 251

8.1 Graphs 252
8.2 Representations of GRAPH 256

Adjacency Matrices 256
‘Adjacency Lists and Edge Lists 259

8.3 Graph Traversals 263

Depth-First Traversals 263
Breadth-First Traversals 265
Spanning Trees 266

8.4 Further Applications of GRAPH 269

Counting Paths 269
Minimum Spanning Trees 272

8.5 Directed Graphs 274

Application: Cheapest Paths (II) 275
8.6 Computational Complexity and Graph Algorithms 280
8.7 Summary 284

SETS 290

9.1 The SET ADT 291
9.2 Bit Vectors and Ordinal Sets 292
Sets Represented by Sorted Lists 295
9.3 Hashing 297 '
Open Hashing 303
9.4 Hashing, Continued 304

Hash Functions 304

Collision Resolution, Again 306

Time and Space Estimates 308 .

Application: Multiple Hashing, Encoding, and Spelling Checkers 311

9.5 The UNION-FIND ADT 314

Tree Representations of UNION-FIND 315
Weighting 318

Path Compression 320

Application: Minimum Spanning Trees, Revisited 322

9.6 Summary 324

Contents -

10.1 The Problem 329 --
10.2 The Solutions 334

Arrays/: 335
Hashing 340
Tries 347

Long Strings 354
10.3 Applications 360

Reactive Keyboards 360 -
Coding, Once Again 361

10.4 Summary 362
Appendix A RELATIONS

Successors and Restrictions 369

Application: Linear Orders and Closures 372

Appendix B TOPICS IN MATHEMATICS

B.1 Exponential and Logarithmic Functions

378
Logarithms 381
B.2 Induction 383

B.3 Counting Techniques 385

Permutations 385
Combinations 386

Appendix C RANDOM NUMBERS AND SIMULATION

C.1 Random Numbers 393
C.2 Probability Distributions 395

Cumulative Probability Functions 396
Uniform Distributions 398

Normal Distributions 399

Exponential Distributions 400

329

365

378

392

Contents

C.3 Selection Algorithms 402

Selecting Subsets 402
Selecting a Subset with k Elements 403
Enumerating Permutations 406

INDEX 409

PART 1

Introductlon

Preliminaries

When making haggis, the easiest part is obtaining the ingredients.
Anyone can get a sheep’s stomach and a quantity of oatmeal,
but the real trick is knowing how to combine them.

Roberta Campbell, The Cuisiné of Scotland

PO

The discipline of computer science is concerned with the study of problem solving with
computers. Notice that we did not say that computer science consists of problem solving
with computers, any more than mathematics consists of solving equations or music con-
sists of producing notes. It is not enough to be able to answer the question, “How do we
solve a particular problem with the help of a computer?” If it were, the study of com-
puter science could stop after one or two introductory programming courses. Instead,
the proper subject matter includes questions like

1. What are the possible different ways to solve a problem?

2. How are the solutions for a particular problem related?

3. What technique is best for a particular problem?

4. What do we mean by a “best” solution for a problem?

S. In what ways are solutions for different problems related?
6. How do we verify that we have a solution for a problem?

7. What problems can, and cannot, be solved with a computer?

Although all of these questions contain the word problem, théy all seek answers. in a
context that is broader than simply solving a particular problem. In fact, all of these

4 Preliminaries Chap. 1.

questions, and all of the questions of computer science, are different aspects of the same
fundamental question:

What general principles underlie the notion of problem solving with computers?

In this text,»we will concern ourselves primarily with those aspects of this fundamental
question that deal with the structure of the data in a program and, to a lesser extent,
with the techniques of manipulating that data.

1.1 PROGRAM DESIGN: ALGORITHMS AND DATA STRUCTURES

We can view the subject matter of computer science as the result of the process of gen-
eralizing from spec;.ﬁc pblem-solving instances, which is to say that computer science
seeks to find propeMies common to many instances of problem solving. Program
design—the writing of programs to solve a problem—proceeds in the opposite direc-
tion: from a vague notion of what needs to be done, to the writing of a program in a
specific language for a specifi¢ computer. The aim of program design is captured in the
most appropriate title yet invented for a book on computer science, Nicholas Wirth's Al-
gorithms + Data Structures = Programs. Wirth, the developer of the Pascal language,
chose his title to point out the twofold nature of a computer program: that a program
consists of an algorithm describing how to manipulate information with a computer,
along with a data structure that provides a logical basis for organization of that informa-
tion in the computer. These two aspects of a program are intimately intertwined: Mak-
ing a decision about one of the aspects often profoundly affects the other.

Algorithms

An algorithm is a finite list of unambiguous instructions that can be performed on a
computer in such a way that the process is guaranteed to halt in a finite amount of time.
“Add up the integers from 1 to 100" almost qualifies as an algorithm, except that the
single instruction it uses is ambiguous—it does not provide sufficient detail for us to de-
cide how to perform the required operation. The instruction does provide us with a
useful starting point, however: Reading it, we have a clear idea of what problem we
have to solve. Indeed, just getting to the point where we know what the problem is can
often represent the major part of a programming task. Knowing the problem, we can
now try to refine the problem into a suitable algorithm.

This simple addition problem occupies a hallowed place in mathematical folklore,
and will serve as a good example of a situation in which there is more than one algo-
rithm to solve a given problem. Karl Frederich Gauss was born in Germany in 1777,
and grew to be, if not the best, then certainly one of the best mathematicians who ever
lived. The story goes” that when Gauss was a boy in what would be the eighteenth-

"This story has about the same amount of truth to it as the tale of George Washington and the cherry
tree, and has survived for about the same reasons.

