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Preface

The overwhelming majority of authors have very little to say.

- If we suppose, rather charitably, that in a typical book of fifteen chapters
there are only eight passages worthy of quotation, then simple

mathematics will convince us that in short order there will be no original
quotations left for chapter headings. The implication is obvious. ...

ARMAND BLAGUE, How to Write

Over the years, I’ve had a number of students who have said, in one form or another,“I
want to be a computer scientist because I really like programming and am very good at
it.” Of course, computer scientists, both novices and seasoned veterans, are often called
upon to write programs, but to equate computer science with programming is to confuse
the product with the process. Being an excellent draftsman who can faithfully represent
a scene on paper is no guarantee that your works will eventually hang in the Metropol-
itan Museum. It’s a step in the right direction, but an artist must also have an intimate
familiarity with the more general principles of composition, persepctive, color, and so
on.

In essence, programming is little more than the efficient management of a parti-
cular kind of large intellectual process, and the guidelines for good programming -are
nothing but the application of commonsense principles that apply to any complex
creative task. It goes without saying, however, that before you can think efficiently you
must have something to think about, which for our purposes means that in order to
write good programs, you must have an idea about how information may be represented
in a program.

Computer science is a young discipline, byt it has developed enough over the past
few decades that there is a growing consensus about what should constitute the core
data structures. In this book, I tried to capture this core by providing what might be
called the *“classic” data structures, the most commonly applied mecthods for
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representing information in a computer program, along with the algorithms for manipu-
lating this information. In terms of something to think about when thinking about pro-
gramming, you have here a collection of tools that should be part of the working
knowledge of any programmer.

This book is not about programming, however. Computer science is a science and,
in common with other sciences, consists in the main of seeking a theoretical framework
that can be used to describe the behavior of the objeqts it studies—in our case, com-
puters and their programs. One of the themes that determined the form of the book is to
provide a broad view of what a data structure really is. I have taken the approach that
data structures are not just a collection of ad hoc declarations and procedure definitions,
but, rather, that any data structure is a particular instance of an abstract data type,
which consists of (1) a set of objects, with (2) a common logical structure defined for
each of the objects, along with (3) a collection of structure-preserving operations on the
objects.

I chose to define the structure of an abstract data type by specifying a structural
relation on each set of positions. Doing so provides a natural progression of the
chapters, where each new abstract data type is introduced by removing some of the
structural restrictions from a prior type. Thus, we begin with lists, whose structure is
defined by a linear order, and progress to trees by removing the requirement that each
position have a unique successor, then to directed graphs by removing the requirement
of unique predecessor, then to sets by removing all restrictions on the structural relation.
Throughout this process, we see that each new abstract data type still can be described
by the threefold view of a collection of sets with a structural relation and a collection of
operations on those sets.

THE AUDIENCE

Though I did not set out to tailor this book to any preexisting curriculum, it turned out
that it covers essentially all of CS2 and part of CS7, as described in the ACM Curri-
culum '78, and a subset of the union of CS2 and CO2, set forth in Norman Gibbs's and
Alan Tucker's 1985 Model Curriculum for a Liberal Arts Degree in Computer Science.
The material contained here should be covered early in any computer science curri-
culum, and I wrote this book for an audience of first- and second-year students in com-
puter science who were familiar with a high-level language such as Pascal. A course in
discrete mathematics is desirable as a pre- or corequisite for this material, but the
relevant mathematical background in relations, probability, and other topics is summar-
ized in the appendixes for those who need it.

THE CONTENTS

My intent was to write a book that could be used as the basis for a semester-length
course in data structures or advanced programming. Realizing that the subject matter of
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this ook comes at an early stage in the education of a computer scientist, I included a
number of mentions, necessarily brief, of somg of the interesting topics that await the
student down the road. Most of the canonical sorting algorithms are covered. along with
mentions of computational complexity, compiler design, unsolvable problems, NP-
completeness and the fundamental paradigms for algorithms.

Chapters 1 and 2 form the introduction of the text. Chapter | covers the necessary
preliminaries, such as program design, the definition of an abstract data type. a review
of Pascal-based pseudocode and pointers. big-O estimates. and the notion of timé and
space estimates. Appendix A, on relations. provides a more detailed study of the ma-
terial of Chapter 1. Chapter 2 is typical of subsequent chapters. in that we introduce an
abstract data type, STRING. describe how it may be implemented, compare the imple-
mentations, and provide extensive application, in this case the Boyer-Moore string-
matching algorithm.

In Chapters 3 and 4 we continue the investigation of linear data structures.
Chapter 3 covers lists, along with related list-like structures such as doubly linked lists,
sorted lists, and braids, and concludes with a discussion of memory management.
Chapter 4 covers the rest of standard linear structures, stacks and queues, motivating
these by applications to manipulate postfix expressions. Since a considerable amount of
queue applications involve simulation, Appendix C would be appropriate at this point.

Chapter 5 provides a segue into nonlinear structures by providing an introduction
to recursion and recursively defined data structures. Timing estimates for recursive algo-
rithms are covered in depth, along with an introduction to LISP. Appendix B covers
logs and exponentials, induction, and elementary combinatorics, and would be ap-
propriate supplementary material at this stage.

Chapters 6 and 7 ‘cover trees. Chapter 6 provides the necessary background on
binary trees and their implementations, traversal algorithms, treesort and heapsort, and
discusses minimal-length codes and tries. Chapter 7, which could be omitted if neces-
sary, covers two extensions of binary search trees, namely AVL trees and B-trees.

Chapter 8 could also be optional. It covers graphs and digraphs, along with a
representative sample of graph algorithms for traversal, spanning trees, minimal-cost
paths, minimal spanning trees, and an introduction to complexity theory through the
Traveling Salesperson Problem.

Chapter 9, on sets, describes bit vector and list implementations of sets, as well as
dictionaries, and provides a comprehensive introduction to hashing. The last section of
Chapter 9 discusses the UNION-FIND data structure, and could be omitted, if worse
came to worse.

In Chapter 10 we consider a problem of regenerating text from a large sample and
trace the development of programs to solve this problem, using a real com-
puter/compiler System to show how time and space constraints arise in practice from
choices of data structure.
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Preliminaries

When making haggis, the easiest part is obtaining the ingredients.
Anyone can get a sheep’s stomach and a quantity of oatmeal,
but the real trick is knowing how to combine them.

Roberta Campbell, The Cuisiné of Scotland

PO

The discipline of computer science is concerned with the study of problem solving with
computers. Notice that we did not say that computer science consists of problem solving
with computers, any more than mathematics consists of solving equations or music con-
sists of producing notes. It is not enough to be able to answer the question, “How do we
solve a particular problem with the help of a computer?” If it were, the study of com-
puter science could stop after one or two introductory programming courses. Instead,
the proper subject matter includes questions like

1. What are the possible different ways to solve a problem?

2. How are the solutions for a particular problem related?

3. What technique is best for a particular problem?

4. What do we mean by a “best” solution for a problem?

S. In what ways are solutions for different problems related?
6. How do we verify that we have a solution for a problem?

7. What problems can, and cannot, be solved with a computer?

Although all of these questions contain the word problem, théy all seek answers. in a
context that is broader than simply solving a particular problem. In fact, all of these
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questions, and all of the questions of computer science, are different aspects of the same
fundamental question:

What general principles underlie the notion of problem solving with computers?

In this text,»we will concern ourselves primarily with those aspects of this fundamental
question that deal with the structure of the data in a program and, to a lesser extent,
with the techniques of manipulating that data.

1.1 PROGRAM DESIGN: ALGORITHMS AND DATA STRUCTURES

We can view the subject matter of computer science as the result of the process of gen-
eralizing from spec;.ﬁc pblem-solving instances, which is to say that computer science
seeks to find propeMies common to many instances of problem solving. Program
design—the writing of programs to solve a problem—proceeds in the opposite direc-
tion: from a vague notion of what needs to be done, to the writing of a program in a
specific language for a specifi¢ computer. The aim of program design is captured in the
most appropriate title yet invented for a book on computer science, Nicholas Wirth's Al-
gorithms + Data Structures = Programs. Wirth, the developer of the Pascal language,
chose his title to point out the twofold nature of a computer program: that a program
consists of an algorithm describing how to manipulate information with a computer,
along with a data structure that provides a logical basis for organization of that informa-
tion in the computer. These two aspects of a program are intimately intertwined: Mak-
ing a decision about one of the aspects often profoundly affects the other.

Algorithms

An algorithm is a finite list of unambiguous instructions that can be performed on a
computer in such a way that the process is guaranteed to halt in a finite amount of time.
“Add up the integers from 1 to 100" almost qualifies as an algorithm, except that the
single instruction it uses is ambiguous—it does not provide sufficient detail for us to de-
cide how to perform the required operation. The instruction does provide us with a
useful starting point, however: Reading it, we have a clear idea of what problem we
have to solve. Indeed, just getting to the point where we know what the problem is can
often represent the major part of a programming task. Knowing the problem, we can
now try to refine the problem into a suitable algorithm.

This simple addition problem occupies a hallowed place in mathematical folklore,
and will serve as a good example of a situation in which there is more than one algo-
rithm to solve a given problem. Karl Frederich Gauss was born in Germany in 1777,
and grew to be, if not the best, then certainly one of the best mathematicians who ever
lived. The story goes” that when Gauss was a boy in what would be the eighteenth-

"This story has about the same amount of truth to it as the tale of George Washington and the cherry
tree, and has survived for about the same reasons.



