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INTRODUCTION

With each passing biennium, the subject of probability in
vector spaces makes more and more impressive gains. Only twenty-
five years ago, there was almost nothing in print in the subject,
and what did exist was mostly an observation that the methods
used in finite-dimensional spaces (which were essentially the
methods for one-dimensional spaces) would extend to infinite-—
dimensional ones with a little coaxing. But there was then
no program of study, and no clear reason to investigate the
subject except for the Everest Principle: it was there. Even
as recently as ten years ago, the subject was considered highly
esoteric. There were already strong indications of the essential
bonds between measure theory and geometry, indicating the
essential role of each in producing theorems, but while the
structure had extent, it was without very much substance.

It was a mere skeleton on which really important theorems
needed to be hung to create a viable body.

It was only five years ago that the accomplishments of a
new and gifted generation of mathematicians had accumulated
to the point that the subject was ripe for its first inter-
national conference (Oberwolfach 1975). By 1978, at the
second conference, the volume of work done in the intervening
three years exceeded all that had gone before, and now again,
we have a new flood of results in only two years. As the 1978
conference had established that no study of Probability could
any longer be considered adequate without basic grounding in
infinite-dimensional theory, so we now see the infinite-
dimensional theory reaching past the finite into the tra-
ditional applications of probability to Physics and Statistics.

I would be remiss if I did not at this time make grateful
acknowledgement of the contributions of Tufts University and
especially of Prof. Marjorie Hahn in making this conference
possible, and also note the generous contribution of the
National Science Foundation toward some of the expenses. As
the Mathematische Forschungsinstitut Oberwolfach supported and
fostered the previous two conferences, so these institutions
supported this one, and Prof. Hahn's volunteering of many hours
of her time was the catalyst which make it all hang together.

Our subject is very healthy and growing at a very substantial
pace. We expect to see it recognized as central to mathematical
analysis within this decade. This volume exhibits the latest
findings, and it is with great pride that I put it forth to the
mathematical community.

Anatole Beck,
Editor

——
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STATISTICS ON BANACH SPACE VALUED GAUSSIAN RANDOM VARIABLES

by A. ANTONIADIS

1. Introduction.

Whereas the classical theory of statistical inference in finite di-
mensional gaussian models is almost completely developed, in the infinite dimen-
sional case many problems are unsolved. It is the purpose of this paper to
provide some methods of statistical inference on gaussian infinite dimensional
models. Our approach is based on recent developments of the theory of infinite
dimensional statistical spaces and on the use of techniques from the theory of

gaussian measures on Banach spaces.

Let us now be more specific and introduce the basic notations and

conventions in order to summarize the results.

Let x = (x(t) )tET be an observation of a real random function

(X(t))tET such that

X = {X(t) = m(t) +X (t) ; t€T}

where T is a compact metric space and (Xo(t)) is a real gaussian func-

tER
tion with zero mean and known covariance K on T X T . We shall assume that
the mean function m belongs to the reproducing kernel Hilbert space H#(K) of

K . The statistical space corresponding to this model is

(RT, ® BR) ,JN _(m,K); meu(K)f ) (1.1)
£ ET RT

where N T(m,K) denotes the gaussian measure on RT with mean m and
covariancz K . A statistical space is a triplet (E,&,®) , that is, the mathe-
matical model associated with a statistical experiment where E is a real vectof
space representing the set of all the possible observations x , & 1is the o-field

of subsets of E generated by the observable events and ® is a family of
hypotheses concerning the probability distribution of the observed random varia-
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ble X in (E,€) . Assuming the model (1.1), statistics for estimating the mean

function m are given and tests of hypotheses of the form "meV" , where V

is a finite dimensional subset of M(K) , are performed.

An often adopted model for V is to regard it as the linear span
of a family of known functions on T . The tests performed are optimal when
the dimension of V is known. Thus, the next problem we are dealing with,

is to define an estimation procedure for the dimension of V .

The representation of our model in terms of gaussian measures on

Banach spaces is discussed in section 2.

In section 3, we survey some results of [ 1] which we shall need,
concerning the estimation of the mean and the tests. Section 4 is devoted to
the estimation of the dimension, which appears as an application of a result

valid for models more general than model (1.1).

2. Notations. Preliminaries.

This section covers the basic definitions and notations necessary

to the following work. All random variables considered from now on will be de-

fined on a complete probability space (Q,a,Pr) ;

*)
If B is a real separable Banach space with norm || |, B de-

notes the topological dual of B and the symbol (.,.) denotes the duality

*
between B and B . As usual B8 denotes the Borel o-field of B .

Let W be a centered probability measure on (B,8) such that
[ llxllz du(x) <+« and let K denote the covariance function of W defined by
B

K(f,q) = J‘B (£,%) (@.%) dux)  (f,g €B)

Then according to lemma 2.1 of [3], the reproducing kernel hilbert
space #(K) of K can be realized as a subset of B and the natural inclusion
map of M(K) into B , say J , is linear, one to one and continuous. The
same properties are true for the adjoint map I* from B* into H(K) if we
identify H*(K) and #®(K) in the usual way. Furthermore, I*(B*) is dense in
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H(K) . Hence, there is a subset {ej ;3J21} of B  such that {7 (ej)=ej;jzl]

is a C.O:N.S in H(K) . Further, the linear operators

N
W = D

*
ok (ek,x) e and QN(x) = x- ﬂN(x) v NS

are continuous from B to B

For every - N2 1 , let HN denote the linear span of {ej; 1<j<n}
which is also the range of ﬂN 5 ﬂN and QN when restricted to H®(K) are

orthogonal projections onto their range.

Finally, if Po denotes the gaussian measure on (B,B) with
zero mean and covariance K , then [ lellz dPo(x) <+® and the above holds.
B

For every m in H(K) , let Pm be the image measure of Po by the map

X+ X+m , x €EB .,

3. Estimation and quadratic tests.

For applications, it is natural to suppose that the C.O.N.S
[ej iJ21} of H(K) is given. With the notations of the above section let & '
be the gaussian statistical space

T = (B,a,{Pm;mEH < HK) } )

N

Here, we give the estimation procedure of the unknown mean m

and some quadratic tests of the hypothesis "m € HN“ against "m ¢HN"

The proof of these results will appear elsewhere 1y

Proposition 3.1. Let T = (B, B,{Pm ; mEHN CH(K)}) be agaussian
statistical space. The statistic

X — TTN(x)
is sufficient for m , of maximum likelihood and defines an unbiased linear es-

timation of minimum variance.

*x %
Remark. In the statistical space I_ = (B, 8, {Pm;mel‘ B)1)
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by using the extension of the Cramer-Rao inequality in Banach spaces as it is
stated in [2], it is easy to check that the identity is an efficient estimator of
m . By efficiency of an unbiased estimator m of m we mean that for any

k3
unbiased estimator M of m and any f in B we have
5 2 o
EP ((f,m—m) ) < EP ((f,m—m)z) .
m m

It is also known that in the gaussian case, nN(x) converges to x Pm a.s.

It follows that the sequence {nN(x) ; N2 11} 1is asymptoticaly efficient.

Next, when we assume B to be the space C(T) of continuous

functions on a compact metric space T , we have

i 0 .
Proposition 3.2 Let (X(t))teT

with a.s. continuous sample paths on T , with covariance function K conti-

be a gaussian random function

nuous on T XT and mean function m in ¥(K) . Then, for every a , 0Osasl ,

there exists an unbiased quadratic test of size a for testing "m € HN" against

"m éHN" . Such a test is of the form

x €CM), [ (Qyx) )2 dv) > t, => m€EH

T N

for some positive Borel measure v on T and some positive real number LOL .

4., Estimation of the dimension.

The estimation procedure presented in section 3, requires the know-
ledge of the dimension N and it is then optimal. Thus, we are faced with
the problem of ‘choosing the appropriate dimension that will fit a given set of
observations. A typical example of this problem is the choice of degree for a
polynomial regression. In this section we present an estimation of the dimension

of the model. Before stating the main result we shall establish some terminology.

Let us consider an n-sample in the statistical space
* *
= (B, BS Pm ;me€J] B)}) . Since we can consider the parameter space

* %
J (B ) partitioned in the following way
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* %
where MN = HN\HN-I and M_ =7 (B )\ISIL\I)<+°°HN , we shall call di-
mension of our model the subscript N of M such that m belongs to M

N N
in Em.

For each x in B and % strictly positive, set

r(x, ) = min {j ; || Qj(X) | <o} (4.1)

where Q, = Id -T, , T being the orthogonal projector onto H

J ] ] ]

The estimation procedure can be formulated in the following corollary whose proof

will follow easily from the general convergence result obtained in theorem 4.1.

Corollary 4.1, Let (xn)nEIN be a sequence of i.i.d random variables in I
There is a positive constant M such that, for any €>0 , r(Yn,cpn(e, M))

defines an estimator of the dimension of the model, P a.s. convergent, where

. r is defined in (4.1), t;on(e,M) = (zlﬂg_xllog_n> 172 (e+M) and Yn=

In
= 02 X
ni=y 1

Before stating our result let us recall a definition which is used

in theorem 4.1.

Pefinition4.1. let u a probability measure on (B, B8) , with mean zero,co-
variance K and such that E“(HXHZ) <+ . The measure W is said to satisfy
the law of the iterated logarithm if for any sequence of i.i.d B-valued random

variables on (Q,Q,Pr) such that S.(Xl) =M , we have

S (w)
P (; WEEGy ; n*; n21 is conditionally compact in Bg) =1
r

v/2nlog logn
n

where S = 3 X
n =

If W satisfies the LIL then, according to | B3

P_(lim d ( (2n loglog ) /% 8§ .8l =0)=1 “.2.)

where S denotes the unit ball of #(K)



 such that S(Xn- m) = 4 where P is as in the definition 4.1 and m belongs t‘

* %
to J (B) . Let d be the dimension of m . There exists a constant M
£ - such that, for any € >0 , we have

P (tuen: um (X @ 9 (e,M) =al) =1

3 with r(}—(n, qpn(e ,M)) as given in corollary 4.1.

Proof. It is well known that the unit ball S of #(K) is com-
pact in B and that Qj(S) S forall j21 . Thus,

M =sup ([|Qu) |l ; N21,x€8) <+= ,

- Let d be the dimension of m . First we will establish the proof for d fi-
nite. In this case we have by definition of d , m €H d \H 41 and therefore
nd(m) =m .

Let us consider

-1/2

1/2
QX ) Il = QX -m) || = (—21°—gnl‘-’-‘-‘—“-) [ ((anoglogn) sn)ll 4.3)

n
where Sn =N (Xi- m) . Since S(Xl-m) =ud and p satisfies the LIL, (4.2)
; (=1 ;

" holds. On the other hand, Qd maps B into B continuously. Hence (4.2)
implies that )

P (lm d(Qu(g).,Q@®) =0)=1 @.a

where §n = (2n log log n)-1 _ Therefore, there exists A €Q with Pr(A)=1

such that for any w in A and € >0 , there is an integer n(e,w) such that

for any n 2 n(e,w) d(Qd(gn(w)) . Qd(s) ) <€ (4.5)

Qg |l < (e+m (4.6)




It follows from (4.3), (4.6) and (4.1) that for any n=zn (e, w)

r(Xn(w) i cnn(e,M)) < d

and consequently
Pr(limnsup r(xn,cpn) Scd)i=] (4.7).

Set F ={weQq;lim inf r(Yn(w) ,cpn) <d} and let w be an

element of F . Thus, for any integer n there exists k(w)2n such that
r(ik(w) ) <d

and since H1 c H2 (e e Hd it follows that

d(X, () Hy 1) <o (4.8).
But d(fk(w) - Hd-l) = d(Yk(w) -m, Hy ,-m) and therefore
d(m, Hy ;) = d(X @), m) +o

~ or equivalently

k 172
(m) dm, Hy_) s |8 @ |+E+M) @.9).

~ Since the dimension of m is d ., we have d(m,Hd_l) >0 . Hence, for any
w in F we have llmnsup Il g, || =+« . Combining this with (4.2) we
then have Pr(F) =0 . Now (4.7) and Pr(F) = 0 implies the assertion of the

theorem 4.1,

To finish the proof, let us consider the case of an infinite d ,

.
that is m€J (B ) \ U
®>Nz 1

HN . We will prove here that

Pr(lim inf r(X'n,cpn) =+®) =1 (4.10).
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Set A={w€A; lim inf r(fn,cpn) <+®} and let w be an element of F
There exists an integer K(w) such that for any n , there is a k 2n which

satisfies
r(fk : ®,) < K

Thus inequality (4.8) holds with d-1=K(Ww)-1 . Hence we have

(4.11) (k“) e

2 log log k d(m' HK(w)-l) i bty ) ﬁk(w)n iy

But d =+« and therefore d(m >0 . Now (4.10) follows from (4.11)

*Hy ()-1)
and (4.2), so the proof is complete.

The proof of corollary 4.1 is immediate since the law P‘0 satis-

fies the LIL. However we stated it because it is the most useful in applications.

Acknowledgement

The author would like to thank R. CARMONA for helpful comments.

References

[1] A. ANTONIADIS, Sur certains problémes d'estimation et de test concernant
la moyenne d'un processus gaussien, submitted for publication.

[2] U. GRENANDER, Abstract Inference, manuscript, to appear.

[3] 7J. KUELBS, A strong convergence theorem for Banach space valued random
variables, Annals of Probability, vol.4, 1976, 744-771.

Anestis ANTONIADIS

Institut de Recherche en Mathématiques Avancées
Université Scientifique et Médicale de Grenoble
BEP. 53 X

38041 Grenoble Cédex

FRANCE



MARTINGALES, AMARTS AND RELATED STOPPING TIME TECHNIQUES

A. Bellow!
Department of Mathematics
Northwestern University
Evanston, IL 60201/USA

The purpose of this paper is to describe the state of affairs in martingale and
amart theory from the point of view of convergence, maximal inequalities and general-
ized Fatou inequalities (which imply convergence), the key tool in these considera-

tions being the notion of simple stopping time.

There are of course many other important areas of research in Martingale Theory,
such as: martingale differences and martingale transforms (see the important work of
Pisier [55] giving a proof of Enflo's theorem that every super-reflexive space admits
an equivalent uniformly convex norm, via martingale inequalities; see also the beau-
tiful recent work of D. L. Burkholder [15]), strong laws, H spaces (see Garsia's
monograph [32] and Maurey's recent paper [45] establishing the Banach space isomor-
phism of the classical Hardy H1 space and the Hl—space of martingales), stochastic
integration (now a vast field in itself), etc. These aspects of the theory will not
be discussed in the present paper.

The paper is divided as follows:
§1. Convergence in the presence of RNP.
§2. Convergence in the absence of RNP.

§3. The case of directed index sets.

§1. Convergence in the presence of RNP.

Let (2,%,P) be a probability space and (gﬁ)nGJN a filtration, i.e., an increas-
ing sequence of sub-o-fields of ¥. Denote by T = T((ﬂ;)nGlp the set of all simple
nEW Then T is
ordered for the natural pointwise order relation o < 1t and T is filtering to the

right.

(i.e., taking finitely many values) stopping times relative to (%J

We first consider the real-valued case: E = R.

We recall that:

Definition 1.1. An integrable process (Xn’gﬁ)ne N is an amart if the net

(E(XT))TG T Converges to a finite limit.

Note that
(xn’gﬁ)nEZN is a martingale <=> E(XT) = constant, for T € T;

(Xn,ﬂh) is a submartingale <=> (E(Xr))r eT is an increasing net.

ncN

IResearch supported in part by the National Science Foundation.



It was soon noticed that Doob's downcrossing proof can be adapted from the mar-
tingale to the amart. This led to the amart convergence theorem:

Theorem 1.1 ([2];[17]). Every L!-bounded amart converges a.s.

Remarks. 1) The idea of using simple stopping times to derive a.s. convergence
from the convergence of the expectation of the stopped random variables, first ap-
pears as such in [46] and then [3] (for the case of uniformly bounded (X )nC]N) The
general Ll-bounded case of the amart convergence theorem was first explicitly stated
and proved in [2]; see also [17]. The amart convergence theorem is in fact contained
in the earlier paper [44]; Lamb's result, however, is not stated in the language of
stopping times. The amart convergence theorem (in the uniformly bounded, or dominated
case) also follows from Sudderth's paper [59]. The latter paper studies the commuta-
tivity of E (expectation) and L (the operation of taking upper limits), that is:
when does fE(XT) = E(fXT) hold, T running through the set of arbitrary stopping times;
this problem was apparently inspired by the notion of "utility of a measurable

strategy' introduced earlier by Dubins and Savage ([23] or [24]). See also [58].

2) It should be stressed tﬁat the essential feature of the amart is that it is
defined in terms of simple stopping times. The first systematic study of amart
theory was given in [26]; it was also Edgar and Sucheston who introduced the term
amart (which now replaces the former term of asymptotic martingale). In addition to
the proofs of the amart convergence theorem mentioned above, various other proofs are
available (for instance [4],[10], Dvoretzky's proof in [6], p. 282; see also [25],
[20]).

The class of Ll-bounded amarts has good stability properties. It is a vector
lattice; it has the optional sampling property. Also the Riesz decomposition holds;

in fact, every amart (Xn,ﬁﬁ) can be written in the form

n €N
(Y’g)nem

E(|Z [y — o0
T€T

is a martingale
X =Y + Z where
n n n

(see [26],[6]).
In what follows we shall use the notation

T(0) = {1t € T|t > 0}, foroe€T.
Before proceeding further let us note (see [9]):

Lemma 1.1. Let (Xn'&-n)n(:‘l\l be an integrable process. Then for each n € IN we

have
T
@) sup ]E(XT) - EX)| = sup le° x1-x|,
(o,71) O,T
0,T€ T(n) o<t
0,7 € T(n)

and hence
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¥
(2)  1im supIE(XT) - E(Xo)l = lim sup ||E = wl

(0,1 (0,7
gt €T o<t
Gy TRl
In particular, in the real-valued case we have:
¥
- o 1 =
(xn’?n)nGN is an amart <=> lim |E [XT] XUHI 0.
(0,1
et
gyt e T

We now consider the case when the random variables X take values in a Banach
space E (always assumed to be separable).

Definition 1.2. An integrable process (xn’gn)nem is said to be of class (B)

if

sup [|X ”1 Sk
glE T AL
that is, if the set {X [0 € T} is L!-bounded.

The definition of amart extends to Banach spaces without difficulty:

is an amart (= a strong

Definition 1.3. An integrable process (xn’ffn)n(-‘l\l
amart) if 1:I.m_re T E(XT) exists in E.

The extension of the convergence theorem to strong amarts was obtained by

Chacon and Sucheston:

Theorem 1.2 ([18]). Assume that E has RNP and that E' is separable. Let
c 1.1
(xn"rfn)n(-‘]N be an amart of class (B). Then there is Y € Lg such that (X))
converges to Y weakly a.s.

n€N

The fact that only weak convergence obtains may be rather disappointing but
this is the best one can get ([5]). 1In fact, using the Dvoretzky - Rogers lemma or
the Dvoretzky theorem that %2 is "finitely representable" in every infinite-dimen-

sional B-space, one can show (see [5]; see also [28]) that:

Every amart of class (B) converges strongly in E a.s. <> E is finite-
dimensional.

The reason for this strange behavior in B-space is that if we replace R by E,
the equality sign in (2) of Lemma 1.1 no longer holds: in general we have strict

inequality.
We are thus led to introduce the notion of uniform amart CI721): ‘
4
Definition 1.4. An integrable process (xn’?n)nem is a uniform amart AL '

lin [E9[X]-X|. =o.
(1) L)
o<t
gyt € T



