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AN OPTIMIZING COMPILER FOR LISP FOR THE Z8f

Jed Marti

University of Oregon

ABSTRACT This paper describes an optimizing
compiler for the 28@. Described are the compilation
mechanisms, optimization techniques, and perform-
ance statistics.

Introduction

UOLISP [1] is a subset of Standard LISP [2]
implemented for the Z8¢ microprocessor. It runs in
a minimum of sixteen thousand bytes of storage and
most effectively in thirty-two thousand or more.
The system is more than just a basic LISP inter-
preter. The entire facility consists of:

a proaram to load precompiled "fast load" files.
[3].

a function trace and break facility.

a parser for a subset of RLISP

a TLISP structure editor.
an online help facility and text formatter.
a nretty print facility.

the Little ""TA translator wiliing systea

[<1.
a compiler and optimizer.
arbitrary precision integer package.

This paper addresses the mechanisms of the
compiler and its optimizer.

The compilation process is divided into three
passes: the first translates LISP into pseudo-
assembly code called LAP (for Lisp Assembly
Program), the second pass performs g.peepholo
optimization on the LAP assembly code, the third
pass translates this LAP into absolute machine
code and places this in storage for execution or
dumps it to a file for later restoration.

Permission to copy without fee all or part of this material.is granted
provided that the copies are not made or distributed for dlrgct
commercial advantage, the ACM copyright notice and the ml_e of the
publication and its date appear, and notice is given that copying is by
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otherwise, or to republish, requires a fee and/or specific permission.
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Overview

The LISP interpreter contains code for reading
functions into the LISP system and executing then
internretively much like other microprocessor
based systems. Unfortunately interpreted functions
require large amounts of storage and execute very
slowly.

A more efficient scheme reads functions in the
interpretive form, and then compiles them to
machine code to be executed directly by the micro-
processor. The interpreted version of the function
disanpears, its storage becomes available for use
at a later time.

For example, the function FACT, which comnputes
the factorial of a nunber recursively, is defined
in UOLISP as follows:

(DE ¥ACT (N)
(coND ((LESSP N 2) 1)

(T (TIMES™ (FACT (susl NM)) X)X

In UOLTSP, dotted-pairs, of which this function is
comnosed, take 4 bytes each. 22 dotted-pairs are
used to define FACT for a total of 88 hytes.

UOLISP's compiler generates the following code for
TACT :

Loc. Code LAP INTEL

BABS - ENTRY FACT,EXPR ;FACT:

PPPP : CDI6B3 CALI, ALLOC ; CALL ALLOC
PR3 : @2 DEFR 2 ; .BYTE 2
ApP4: DTFE STOX HL,-1 ; *3TOX HL,-1
gpge : 11p24p LDI BS ;2 : LXI DE,2
ppg9: E7 RST  LINK H RST  LINK
PABA: 1720 DEF]  LESSP ; .ADDR LESSP
gp@c: 2875 JREQ $1 i JRZ $1
BPPE: 219149 LDI HL,1 ; LXI HL,1l
@@Ll : 188D JR Sg@ 3 JMPR SP
@p13: $1: 151z

2P13: CFBF LDX HL,-1 ; *LDX  HL,-1
@p15: E7 RST  LINK : RST  LINK
gpL6: £32¢ DETY SUBL ; .ADDR SUB1
gple: E7 RST  LINK ; RST  LINK
##19: n82¢ DEFW FACT : .ADDR FACT
PPLB: CF7T LDX DE,-1 ; *LDX DE,-1
@#1D: E7 RST  LINK ; RST  LINK
#p1T: 1D21 DEFYW TIMES2 ; .ADDR TIMES2
2728 - $P: ;82

2@2% : CD@8B4A CALL RDLLOC : CALL RDLLOC
@##23: FE DEF3 -2 ; .BYTE -2

* means macro form.



A total of 36 bytes are used, less than half the
size of the interpreted version. The compiled
version runs over 40 times as fast.

Compilation Mechanisms

Compiled programs move information between
registers and call subroutines to perform most
operations. In this section we describe how
important LISP constructs are implemented in LAP
and enumerate the various support functions
required.

Parameter Passing

Zero to three parameters may be passed to a
function. The first argument of a function (if it
has any) will always be in the HL register pair,
the second in DE, and the third in BC. Functions
with more than three arguments cannot be compiled.
This particular mode of execution is called the
register model as opposed to the more common
stack model. We believe that the register model is
inherently more efficient than the stack model
though perhaps more difficult to compile for.

Stacks

Function parameters and PROG type variables
are kept in a stack frame, sometimes called an
activation record, a contiguous block of locations
pointed to by the IX index register. Vhen a
function is invoked it creates a new frame on the
top of the stack by calling the ALLOC support
routine. When a function terminates it calls the
DALLOC routine which subtracts the number of
locations used from IX, freeing the space for use
by the next function.

Storing and retrieving values from the stack
{rame 1is accoiiylished by the twu support rcutines
LDX and STOX. Since these operations occur
frequently in compiled code it is necessary that
they use as little storage as possible. Therefore
the LDX and STOX routines are called using the
Z8fp RST instruction with the following byte
containing which register pair is to be stored (or
loaded), and the displacement from the top of the
stack frame. The LAP instructions generated by the
compiler are also called LDX and STOX and contain
the register pair name and what displacement is to
be used.

Both LAMBDA expressions and PROG forms
generate the ALLOC and DALLOC calls to handle
stack frames. One of the optimizations performed
is to substitute the appropriate number of
increment or decrement IX instructions, or for
larger frames, a sequence to add to IX. This has
the disadvantage of not checking for stack
overflow.

The Z8@ internal stack is used for saving
return addresses and intermediate values during
function evaluation. A call to a function FUN3
with three arguments stores the results of
evaluation of the first two arguments on the Z8f
stack while the third is being computed. The
values are popped into the appropriate registers
just before the function is invoked.

(FUN3 (FUNA ...) (FUNB ...) (FUNC ...))
would generate the following code sequence :

... evaluate FUNA ...

PUSH HL ;Save result of FUNA.
... evaluate FUNB ...
PUSH HL ;Save result of FUNB.
... evaluate FUNC ...
LDHL BC ;Move HL to BC.
POP DE ;FUNB is second argument.
POP HL ;FUNA is first argument.
RST LINK ;Call FUN3.
DEFW FUN3

Function Invocation

The compiler will not always know the address
of a function being called because it might not
be defined yet. Even if the function is defined
the compiler does not know whether it will be

compiled or interpreted at run time. A special
internal subroutine called LINFK i used t.
transfer control at run time. Since hot : compiled
and interpreted functions can cxist at tle AT
time, LINK will perform either of two functions.
If an interpreted function is bein: call.d from
compiled code the LISP interpreter will ix
invoked for that function. If the function being
called is compiled or is a system function the
call to LINK will be replaced by a direct call to
that function. The call to the NE function must
be an RST type link so that the three !ute THS
CALL instruction will exactly replace the compiled
call. If the system global variable !*FLINF 1s NIIL
the substitution will not take place and the slow
link form will remain. This is a useful debugging
tool as it allows you to compile functions and
change their definitions (for tracing) without
reloading the system.

Compiled as: Changed by LINY to:

RST LINK CALL function-addres

DEFW function-name
The two byte DEFW attached to the LINF contains

the symbol table pointer of the function ing
called. At execution time the LINK routine looks

for either a compiled or interpreted function

attached to the name and either invoke: REVAL,
generates the CALL, or if the !*FLINV. “lag 15 on,
just transfers to the function. If no tuch
function is defined, an error will ccour and the

name of the function will be displayed.
The LIST Function

The LIST function is compiled in a special way
to take advantage of the Z8@ internal sitack. The
arguments of the LIST function are compiled and
the results of each are pushed onto the stack.
When all have been computed the support function
CLIST is called.

(LIST (F1 ...) ... (¥n ...))

compiles to:



... evaluate F1 ...
PUSH HL ;Save result of F1 for CLIST.

5 ;Evaluate other arguments.
... evaluate Fn ...
PUSH HL
MVI  A,n
CALL CLIST

;Save result of Fn for CLIST.
;Number of values on stack.
;Call to CLIST routine.

COND Compilation

The LISP COND function is compiled into a
series of tests and conditional jumps. The CMPNIL
support routine compares the result of a predicate
to NIL and sets the Z8@ NZ and Z flag bit which
controls the conditional branch instructions
generated. If the last predicate of the COND is T,
the predicate and jump will not be compiled (the
usual case).

(COND (a (a_ c))
n

g Cﬂ) e N

generates the following code:

... evaluate a_, ...
RST CMPN?L ;Is a, NIL?
JPEQ Gppgl ;Yes, jump to next antecedent
... evaluate c_, ...
Jp Gﬂﬂﬂg ;First consequent done, quit.
G@apl - ;Come here if aﬂ not T.

. ;Evaluate other a - c pairs.

GPPPX : ;Try last predicate.
*... evaluate a_ ...
* rsT cMpRIL  ;Is last one NIL?
* JPEQ Gp@p2 ;Go return NIL if yes.
... evaluate c_ ...
GP@R2 : n ;Always come here when done.

Lines preceeded by an asterisk are not generated
if the last predicate is T.

PROG, GO, and RETURN
The PROG function and the control constructs
GO and RETURN are compiled by plugging lablels and
values into a template.
(PROG (X)
IBL ...

g ... (RETURN value)

(GO LBL)

compiles to:

CALL ALLOC
DEFB 2

LDI HL,NIL ;PROG variable set to NIL.
STOX HL,-1

;Space to save X allocated.

LBL: ;A PROG label generated.

... evaluate value ...

Jp Gg@apgL ;Jump to the end of PROG.
Jp LBL ; (GO LBL) generates JP.
GAPa1 - ;RETURN's come here.

CALL DALLOC ;Deallocate stack frame for
DEFB -2 ; storage of X.

AND and OR Compiled.

AND and OR are compiled identically except
that the evaluation of the arguments of AND
terminates if one is NIL, and the evaluation of OR
terminates if one is non-NIL. The compilation of
AND generates JPEQ instructions after a comparison
to NIL, and the compilation of OR generates JPNEQ
instructions.

(AND aﬂ o o an)

compiles to:

... evaluate a_ ...
RST CMPN?L ;Is result of a, NIL?
JPEQ Ggggl ;Stop evaluatiog if yes.
. ;Evaluate other arguments.
... evaluate an “s®
GpPPL : ;Always end up here.

Constants, Variables, and Quoted Values

These items are loaded directly into the
correct register for the function to which they
are to be passed. Toc:l and glohal variables may
have values assigned to them with the appropriate
store instruction.

Quoted items are saved on a list of compiled
quoted values so that the garbage collector will
not remove them. The value representing the
quoted item is loaded into the appropriate
register.

Compiling FEXPR Calls

When compiling calls to user or system defined
FEXPR's the argument list is passed as a list to
the function for evaluation. This interpreted
form interacts poorly with compiled code for the
following reason. All local variable names
declared in a function are replaced with their
stack frame locations by the compiler. When the
FEXPR tries to evaluate its argument in the
environment of the calling routine, the variable
name in the S-expression cannot be found. The
solution is to declare any variables to be passed
to an FEXPR for evaluation as GLOBAL. This need
not be done for COND, PROGN, PROG, OR, and AND
because these forms are compiled into object code
rather than as calls to functions.



The Optimizer

The optimizing phase is divided into two passes
and features two levels of optimization and a speed
or space choice. The first phase is an extended
peephole optimization, the second removes function
prologs and epilogs from routines which do not need
stack frames. The three levels of optimization
include a "safe set", a set of speed optimizations
which increase code size, and a "dangerous set"
which removes some error checking.

The Closing Window

There has been considerable research on peep-
hole optimization for retargetable compilers [5-7].
The version used in the UOLISP optimizer might be
more aptly called a "closing window" optimizer. The
hole examined by the ontimizer initially includes
the entire program. Each instruction is removed
from the window in turn. The advantage of this
mechanism is that the entire »rogram may be
scanned for cach instruction examined. Most of the
optimizations do not scan very far ahead.

Redundant Instruction Removal

This optimization removes several forms of
instructions which replicate data already in
registers. For example:

STOX HL,-1
LDX oL,-1

becomes STOX HL,-1

The closing window method permits any nunber of
instructions between the STOX and LDX which do not
modi fy the contents of HL (or whatever register is
used) .

A second ontimization removes store instruc-
tions whose location is never referenced. This
optimization is very imporiant in small sub
routines. If all store instructions are removed,
the stack frame allocation »nrolog and epilcg mav
also be removed. Many very small routines can be
reduced in size by as much as 85%. Since a great
deal of time is spent in small routines, this
optimization can be very important.

Jump Instructions

Several optimizations of this type arc
performed. The simplest removes unreachable code.

JP label
a

1abelb: AT

All instructions between the JP instruction and the
first label (label ) following it are removed since
they cannot be reached from anywhere. The same
optimization is performed when a subroutine is
called from which no return can be expected.
Functions which always generate an error or use the
THROW function have this feature.

Another jump optimization removes worthless
forward jumps. Thus:

Jp label
label : .
a

results in the jump instruction being removed
completely.

Conditional expressions are examined for
nultiple inversions. Thus:

CALL NOT
RST CMPNIL
JPcond. label

becomnes RST CMPNIL
JP-not-cond. label

The final jump optimization garners the most
savings of all optimizations. It determines the
distance jum» instructions rust travel and if it
is less than 127 bytes in either direction the
instruction is converted to its short form. Since
most LISP functions are very short, most jumps end
up in their short forms saving 1 byte. Unfor-
tunately short jumps are usually 20% slower.

Stack Frame Optimizations

Many times the end of a PROG form is also the
end of its corresponding LAIBDA expression and two
DALLOC calls will occur in a row. In this case the
optimizer combines the two calls into one by adding
their sizes together. A further optimization
occurs if the last CALL DALLOC is immediately
followed by a RET instruction. The call to DALLOC
is replaced by a call to the special routine
RDLLOC which automatically does the extra return.
The use of this routine saves 1 byte and about
5 microseconds (for the 4 mthz. Z8@A) »n each
function exit.

Reduction in Strength

This class of optimizations replaces several
lonag form instructionc (or sets of instructions)
with a simpler Z8@ instruction. Thus moving HL to
DE has an XCHG instruction substituted, saving a
single byte. A 3 bvte call to any of the CAAR,
CADR, CDAR, and CDDR is replaced with two single
byte calls on CAR and CDR saving a single byte.
This optimization is disabled on machines which do
not have the 1 byte calls on CAR and CDR. Finally,
the 4 byte version of the LHLD instruction is
replaced with its shorter and faster 3 byte
version.

Fast Optimizations

The LD¥ and STOX stack frame referencing
functions take two bytes for each use. The
functions themselves take anproximately 50 micro-
seconds to execute. Approximately 50% of the
execution of compiled code is spent in these two
routines. By onen coding them as indexed MOV
instructions, the time is reduced to less than 10
microseconds at the expense of 4 additional bytes.
This particular optimization can be turned on and
off by the user so that very important functions
are ontimized and less important ones, slower but
much smaller. In the factorial example, use of
this ontimization results in a 24% speed improve-
ment at a cost of a 38% increase in size.



Dangerous Optimizations

This set of optimizations removes a number of
error checks to increase execution efficiency.
With selective use they cause no problems. One
such optimization replaces the stack frame alloc-
ation routine calls by a string of increment or
decrement register IX instructions:

CALL ALLOC becomes INX X
DEFB 4 INX X
INX X
INX X

Larger stack frames use a DADX instruction rather
than the increments.

CALL ALLOC becomes EXX

DEFB 156 L¥I HL,16
DADX HL
EXX

The corresponding decrement forms are used for the
stack frame deallocation calls. The deallocation
is done as part of the fast optimization because
it is never dangerous.

The second optimization is open coding of the
ADD1l and SUBl functions. These are replaced by
INX HL, and DCX EL instructions. They are not
dangerous as long as the sign of the number does
not change. A sign change causes overflow into the
tag field of a number changing it into a bad
identifier or string pointer.

Second Optimization Pass

The second optimization pass removes the
function prolog and epilog if no stack frame is
used. Thus the function:

(DE CAAAAR (X) (CAAR (CAAR X)))
is compiled without optimization into:

ENTRY CAAAAR,EXPR
CALL ALLOC

DEFB 2

STOX HL,-1

LDX  HL,-1

CALL CAAR
CALL CAAR
CALL DALLOC
DEFB -2

RET

This version uses 19 bytes. After the first
optimization pass the following code is produced:

ENTRY CAAAAR,EXPR
CALL ALLOC

DEFB 2

RST CAR
RST CAR
RST CAR
RST CAR
CALL RDLLOC
DEFB -2

This version takes 12 bytes. The second pass
notices that the stack frame is never used (there

are no STOX or LDX instructions). The final pass
produces:

ENTRY CAAAAR,EXPR

RST CAR
RST CAR
RST CAR
RST CAR
RET

The final version takes only 5 bytes, a savings
of about 75%.

Execution Statistics

We now examine the effect of the optimizer on code
size and execution speed. A rough approximation of
two different types of programs and their size and
execution statistics are given. The first program
is the factorial example. 6! was computed 18,7898
times on a 4 megahertz, 64k CP/M system. The
second test does a complete reversla to all levels
of a binary tree. It is also executed 1¢,0¢@ times
and experiences 6 garbage collections.

(DE SUPER!-REVERSE (A)
(COND ((ATOM B) B)
(T (CONS (SUPER!-REVERSE (CDR A))
(SUPER!-REVERSE (CAR A)) ))))

The tree ((A . B) . (C . D)) was reversed to
(. cC) . (B. Rn).

Size A/B Tine A/B

Bytes Seconds
No optimization 42 / 44 48 / 43
Safe optimization 37 / 38 45 / 37
Safe and fast 51 / 56 34 / 26
Fast and dangerous 49 / 56 27 4 23

At best the optimizer provides « 47% speed up at
the expense of a 20% space increase.

To get a view of the effectiveness of each of
the individual optimizations over a class of
programs, 8 different programs were compiled and
the number of bytes saved by each of the reduc-
tion in size optimizations were tallied.

Opt. Program

No. A B C D E E G H Total
1 44 16 16 12 g 24 12 12 136
2 52 43 2p¢ 5 13 16 7 42 198
3 34 34 38 2 26 28 8 98 268
4 18 28 8 2 2 2 2 36 96
5 56 118 52 1@ 3 4 2 2 2:33
6 2 6 2 ] 6 2 # 15 27
7 12 54 J4) 3 [4) 6 6 33 114
8 47 8 26 4 19 21 18 77 231
9 16 64 16 2 2 7 7 84 194
1p 22 # 36 2 8 8 29 2 98
11 66 27 27 9 6 18 24 30 207
12 129 178 75 2§ 33 55 64 135 677
13 12 1 3% 2 4 2 5 8 63
14 33 21 2 9 4 12 2 2 79
% 12 12 13 1g 14 12 14 14 12:5



The most important space optimization by far is the
short jump conversion, the second, the removal of
redundant load register instructions, the third the
conversion of 4 byte LHLD instructions to 3 bytes,
the fourth, the conversion of 16 bit move HL to DE
instruction (actually two instructions) to an

XCHG instruction, the fifth, the inversion of
conditional jumps, and the sixth the use of the
RDLIOC stack deallocation routine. The least
important is the removal of dead code after
functions which do not return.

The average reduction in size achieved by the
optimizer is a little over 12.5%. This compares
very favorably with other peephole optimizers
which gather about 15 % (one of these has over
two hunderd separate optimizations).

A final test compares UOLISP generated compiled
code with that produced by various compilers for
mainframes.

Test A B [ UOLISP
1 132 391 51 145¢
2 135 3502  1¢37 49098
3 117 748 1173 15508
4 562 4692 2312 185099
5  2¢72 8313 2423 37089
6 1§98 9231 12806 189909
7 1062 1972  136¢ 137¢9
8 1p19 18326 68¢¢ 49080

The 8 different programs tested were designed to
exercise various features of compiled LISP code.
The tests for the first three LISP compilers were
taken from [8] and have been subsequently
improved. Machine A is a large DEC 2@6@ running
LISP 1.6 with the Portable LISP Compiler [9],
machine B is a VAX 11/75@¢ running Franz LISP,
machine C is a VAX 11/75@ running Portable
Standard LISP Version 2 [14], and UOLISP ruas

on a 64k Z8@A system with CP/M 2.2. A few of the
time tests reflect the relatively small amount of
space available and a large number of garbage
collections. The statistics show that compiled
UOLISP code is on the average one fiftieth the
speed of a DEC 2@6@ running LISP 1.6, one seventh
the speed of Franz LISP, and one tenth the speed
of Portable Standard LISP on the VAX 11/758.

Conclusions

The UOLISP compiler runs on almost any Z8@
based machine with a minimum storage configuration
of 32k bytes and a disk drive. The compiler and
optimizer have been tested under both CP/M and the
TRS-80 Model I and III with success. Turning on
all of the optimizations slows down compilation
by approximately 4@ percent. The UOLISP compiler
occupies 375@ bytes of storage and the optimizer
with statistics collection another 3@@@ bytes.
Standard Use has debugging done without the
presence of the optimizer and the final run with
the optimizer enabled.

List of References

1. J. Marti, 'UOLISP Users Manual', University of
Oregon Department of Computer and Information
Science Technical Renort CIS-TR-8@-18.

2. J. Marti, A. C. Hearn, M. L. Griss, C. Griss,
'The Standard LISP Report', SIGPLAN Notices,
Vol. 14, No. 1@, (October 1979), pp. 48-68.

3. A. C. Hearn, 'REDUCE 2 Users !anual', Utah
Symbolic Computation Group UCP-19, University of
Utah, 1973.

4. J. Marti, 'A Session with the Little Meta
Translator Writing System', University of Oregon
Technical Report CIS-TR-82-g1.

5. J. W. Davidson, C. . Fraser, 'The Design and
Application of a Retargetable Peephole Optimizer'
ACM TOPLAS, Vol. 2, No. 2, (April 1980),
pp. 191-2¢2.

6. A. S. Tannenbaum, H. van Staveren, J. ‘.
Stevenson, 'Using Peephole Optimization on
Intermediate Code', ACM TOPLAS, Vol. 4, No. 1,
(January 1982), pp. 21-36.

7. D. A. Lamb, 'Construction of a Peephole Optim-
izer', Software Practice and Experience, Vol. 11,
No. 6, (June 198l1), pp. 639-647.

8. M. L. Griss, PSL Interest Group Newsletter #4,
February 1982.

9. M. L. Griss, 'A Portable LISP Compiler', Soft-
ware Practice and Experience, Vol. 11, (June
1981), pp. 541-6@5.

1¢. 'The Portahle Standard LISP Users Manual',
The Titah Symbolic Cc nputation Group, University
of Utah, January 1982.



SAUSTATL - A New Soft-
ware Enviroanment

Robert K. Bell
Marloffsteiner Str.l4dc
8521 Uttenreuth

West Germany

J. Introduction
SAUSTALL (Sequential Algocithmic Univer-
sal Set-Theoretical Associative Logical
Language) 3tarted as an attempt to de-
fine a new programming languazge. I have
widened ibts scope to include the total
software environment. It is hoped that
SAUSTALL will be accepted as a general
purpose language considerably better than
coaventional programming languages.
Further, SAUSTALL attempts to overcome

the conventional division of software

into compilers, editors, command language,
etc. It may be thought presumptuous to
place before the public something which

is a long way from availability. The
reason for doing it is in the hope of get-
ting reactions from the software community
which will improve SAUSTALL.

2. The gmall computer eavironment

The relative merits of small computers,
large computers, distributed computers,
etc., have been discussed at great
length in the literature. I do not wish
to repeat this discussion, but there is
one aspect of it which is very relevant
to SAUSTALL. +~mall computers encourage
innovation. There are three reasons for
this.

1. The complexity of the systems soft-
ware of large computers and the lack of
good documentation makes alterations
difficult. Even the correction of trivial
errors can take moaths.

2. The commercial success of the large
computer manufacturers depends largely
on their success in achieving installed
base migration (IBM) within their own
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commercial advantage, the ACM copyright notice and the title of the
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product line. This means that ease of
transition from older to newer products
must be easier than transition to compe-
titive products. It follows that a faci-
1ity once provided is seldom withdrawn
and software grows more in quantity than
in quality.

3. Large computers tend to be under the
direct control of a computer department
comprising individuals with a direct in-
terest in the continuation of the existing
arrangements and see change as a danger

to their own relatively comfortable and
well paid positions.

If we turn our attention to small compu-
ters the picture is far less gloomy.

1. The software is simpler and often bet-
ter documented. It is, in general, much
easier to alter or extend.

2. Small computers are relatively new and
the requirement that facilities available
in current software will be available in
the future is less onerous in practice.

5. Small computers tend to be under the
control of individuals whose careers are
not closely linked to the computer. Thus
their resistance to any change which might
Jeopardize their career does not apply to
their computer.

5. The language

The genesis of SAUSTALL lay in a certain
personal dissatisfaction with existing
programming languages. I do not propose
to discuss existing languages in detail;
in general I would suggest that existing
languages do less than is possible to
facilitate the production of good pro-
grams.



SAUSTALL will be a large language, in this
context closer to PL/1 than to BASIC. An

important design aim 1s genuine modularity.

By this I mean that the ordinary user need
not understand, or even be aware of those
facilities which he does not use.

A1l user identifiers must be declared. If
a user identifier is the same as a basic
word of SAUSTALL then the compiler will
treat it as a user identifier. There will
be some exception to this, e.g. "end",
but these will be relatively few. Thus
there will be a small number of reserved
words, which the user must know, and a
large number of basic words, which the
user neet not know unless he makes use of
them deliberately. If a psychologist, un-
aware of complex numbers, introduces a
variable called "complex", there is no
harm done.

In my opinion a programming language
should not compel a programmer to use a
particular style. If the programmer does
not want to use '"goto" then the language
does not compel him to use it. If, how-
ever, he is recoding in SAUSTALL an exi-
sting program in some other language, he
may be very glad to be able to do so.
Universality is a design aim of SAUSTALL.
I mean by this that there are no applica-
tion areas which are not considered rele-
vant to SAUSTALL. On the other hand com-
patibility with existing programming
languages is not a design aim.

Ultimately the motivation for SAUSTALL

is personal. I am trying to express in

it my own ideas on programming languages,
based on my own experience.

4., Variables

The conventional concept of a variable
is generalized as follows:

1. Constants can be declared, e.g.
constant real pi = 3.14159.

2. Asynchronous variables are allowed.
They differ from ordinary variables in
that they do not necessarily have a
value. They are useful when executing
concurrent processes.

If a process attempts to read an asyn-
chronous variable which does not have
a value, then the process is held up
until some other process assigns a
value to the variable.

If a process attempts to write to an
asynchronous variable which has a value,
then the process is held up until some
other process reads the value. Asyn-
chronous variables can also be tested
as to whether they have a value.

5. Exogeneous variables
a value only by reading
from a file or from the

can be assigned
their values
keyboard.

4. Endogeneous variables can be assigned
a value only by executing an assignment
statement, not by reading the value.
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Consider a program containing only exo-
geneous and endogeneous variables. It
must be possible to calculate the values
of all the endogeneous variables from the
exogeneous variables in a finite number
of steps. If the user alters the value of
an exogeneous variable then the system
automatically recalculates all the endo-
geneous variables. Users of VISICALC

will be familiar with this concept.

In SAUSTALL I have tried to provide faci-
lities similar to VISICALC for a much
greater variety of data types and struc-
tures.

5. Data types

SAUSTALL will support the following data
types:

1. logical.
A logical variable takes the value true or
false.

2.
An
in
3.
4, flag.

A Tlag takes a value from a range of named

alternatives e.g. piece = king, queen,
castle, knight, bishop, pawn.

integer.
integer variable takes an integer value
some given range.

character.

5. real.

A real variable takes a value in a speci-
fied accuracy. It is not necessarily re-

presented in the computer by its mantissa
and exponent.

6. bit.
A bit takes the value O or 1.

7. complex.

A complex variable represents a complex
real number. The components have a speci-
fied accuracy and range.

8. interval.

An interval variable represents a real in-
terval. Addition, subtraction, multiplica-
tion, and division of intervals is possible

9. flag value.

Values of flags which occur in more than
one flag with the same meaning must be de-
clared as flag values. It is then possible
to compare the values of flags

white, black;
white, black;
white, black;

e.g. flag value =
flag next move =
flag piece colour=

if piece colour =

Symbolic variables will also be supported,
i.e. SAUSTALL will be able to perform
algebra as well as arithmetic

next move then...



e.g. symbolic real x, y, 2;
x:i='a+b';
yi=te+dls
Zi= X+Y;

6. Data structures

SAUSTALL will support the
structures:

following data

1. composition.
I regard a composition as a means of grou-

ping together under a single name variables

which often occur together

€.,
flag marital status = single, married;
flag sex = male, female;

composition family status = marital
status, sex;
if family status = (single, male)
then ...
Thus the components of
identifiers which have
individually declared,
accessed individually.

a composition are
previously been
and which can be

2. array.

An array is a multidimensional structure
as in Fortran, except that it is not ne-
cessarily rectangular. Index [1% is the
value of the index of the 1'th dimension.

e.g. a [1:5, 1:index [1]]

is a lower triangular array

* * *

*
* %
The array bounds can be conditional ex-

pressions so that highly complicated
arrays can be declared.

3. collection.

A collection is an unordered set of values
of a given data type,

e.g. integer collection i (1 to 100)

contains some integer values from

T to 100. To put it another way, a
variable has normally a unique value.

If the uniqueness requirement is removed
we get a collection. Elements can be
added to or taken from a collection, and
the number of elements in a collection
can be determined.

4, sequence.

A sequence is a set of values of a given
type in a definite order. One or more
elements can be removed from the beginning
of the sequence, i.e. the sequence can be
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split. One or more elements can be added
to the end of the sequence, i.e. two se-
quences can be concatenated.

5. singly linked list.

A singly linked list 1s a set of values in
a definite order. Associated with each
element is a pointer to its successor.
There are also pointers to the head of

the 1list and the tail of the list. Due %o
the use of a pointer a list is more flexi-
ble than a sequence but requires more me-
moTy .

6. doubly linked 1list.

In a doubly linked list the set of values
can be examined in either direction of the
order. Thus each element has a successor
and a predecessor, both of which can be
accessed from the element. Thus a doubly
linked 1list is an extension of a singly
linked list.

7. professor.
A professor is a logical variable which
can only take the value "true". Thus

professor smith;
logical x;

if x = smith then ...

is equivalent to

logical x;

.

if x then ...

8. matrix.

A matrix has the properties described in

conventional algebra text books, and the

more common matrix operations will be pro-

vided. Symmetric matrices, band matrices,

and symmetric band matrices will be imple-

mented. Matrices (other than band matri-

ces) can also be declared with the attri-

bute "sparse'. Only the nonzero elements

of sparse matrices are stored.

A possible declaration is

sparse s etric real symbolic matrix
m[ﬂ:n,ﬂ:n,,

J

9. ladder.

A ladder is familiar from "for" loops but
has not previously, as far a I know, been
suggested as a data structure. A ladder
has 3 components: initial value, increment,
final value.

ladder 1[1,’],n] :
%or i: =1 do

is equivalent to
for i:=1 step 1 until n do



