


Minicomputers and
Microprocessors

Martin Healey, PhD, MSc, C.Eng, MIEE

Department of Electrical and Electronic Engineering,
University College, Cardiff.

Hodder and Stoughton

London Sydney Auckland Toronto



ISBN 0 340 20113 4

First printed 1976
Reprinted 1977, 1978

Copyright © 1976 Martin Healey

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopy, recording or any
information storage and retrieval system without permission in writing from the
publisher. )

Printed in Great Britain for

Hodder and Stoughton Educational,

a division of Hodder and Stoughton Ltd.,
Mill Road, Dunton Green, Sevenoaks, Kent,
by J. W. Arrowsmith Ltd., Bristol BS3 2NT



Preface

There are a large number of text books on the market covering the
broad field of digital computers. As an author, one must justify any
extension of this list. It is not sufficient just to create an alternative,
direct competitor to established standards. True, time creates obsoles-
cence in books as it does in hardware, so that there is always room for
the occasional ‘new techniques’ text, but this one is largely fundamen-
tal, covering basic technology that is well established. This text aims to
be different in two ways, firstly it concentrates on the small and medium
sized machines, known collectively as minicomputers and the modern
Ls1 offshoot, the microprocessor, and secondly the accent is entirely
one of ‘How does it work?’ rather than ‘How do you design it?’

The book is primarily aimed at Engineers and Systems Analysts who
wish to know more about the machine, which is, when all said and done,
simply a component in a system to them. It is the author’s opinion that
all Electrical Engineering undergraduates should take a course on
computer fundamentals, such is the impact of these machines on all
walks of life. Those students studying computer science or computer
design, require far more detail than is included here, but a study of
minicomputer architecture and the associated software and peripher-
als will well serve as an introductory text. This concept, which is not
commonly accepted in computer teaching if the standard texts are a
guide, is all the more relevant nowadays since the drastic fall in the cost
of ‘stand-alone’ minicomputers means that these machines can be
made available for ‘hands-on’ practice, aveiding the problems of
sharing a larger general purpose machine.

The microprocessor is strictly a central processor fabricated on one
or two LsI chips. This means that smaller, dedicated, digital computers
can be tailored to suit a particular requirement. The fundamental
principles of operation of microprocessors are the same as those of
minicomputers. These machines will be used in industry to replace the

\Y



Preface

larger systems currently made up of TTL logic chips. This means a
drastic about face in the background requirements of the systems
engineer. The detailed study of combinatorial and sequential logic will
become less important, the need to program a small computer in a low
level machine language moving to the fore. It is this problem which
leads the author to believe that a broader knowledge of digital
computers is required by the next generation of electrical and
electronic engineers. It is possible, in the usual conflict for teaching
time, that machine code or Assembly Language programming
will be considered more important than logic minimisation
techniques.

The book is presented in nine chapters. The routine arithmetic,
logic, memory and electronic processes are briefly described in appen-
dices, rather than the main text, since, with normal electronic studies,
and indeed with the newer maths taught in schools, many readers will
be well versed in these topics.

Chapter 1 describes a range of applications of minicomputers and
microprocessors, related to larger digital computers. Attention is given
to the problem of schematic and conceptual descriptions of the
fundamental components used in the make up of a computer.

Chapter 2 explains the basic features of a simple minicomputer, by
developing a hypothetical machine. The importance of the relation of
the hardware operations that can be implemented to the possible
instruction set, constrained by a fixed word length, is stressed.

Chapter 3 contains descriptions of the more refined, but fundamen-
tal, features found in modern minicomputers CPUS.

Chapter 4 expands the 1/0 considerations introduced in Chapter 2,
including interrupt structures and block data transfer. The more
practical aspects of interfacing are also introduced.

Chapter 5 describes the special features of the microprocessor,
concentrating on a typical 8 bit machine. Short descriptions of the
peripherals commonly used, including bulk storage devices, are given
in Chapter 6.

““Chapter 7 1s a review of the requirements and availability of
software. ﬁxe scope is extensive but purely descriptive. It is not a
programming course.

In attempting to present the facts in a logical progressive fashion, a
number of more sophisticated hardware techniques are skipped in the

- earlier chapters and are grouped together in Chapter 8. In general, the

materiat presented in this chapter covers newer, better methods of
doing the more fundamental tasks previously explained.

The final chapter is included rather as a practical warning. In this
chapter brief comments are made on the problems of purchasing and
installing a computer system. It serves a warning that the purchaser can

Vi



Preface

get carried away with the technical complexity of digital computer cpus
and forget the more important aspects of the system.

As a course in minicomputers or fundamentals of any digital
computer, this text can be read sequentially from beginning to end.
The appendices are only intended for quick reference or revision;
indeed sgparate textbooks are required to do justice to each topic
covered.

The text is organised so that the engineer who requires an explana-
tion of microprocessors only, may read Chapter 2 followed by Chapter
5, filling in any further details as required.

A fairly extensive bibliography, constrained largely to textbooks
rather than papers, is included. In particular, however, I would like to
acknowledge the ‘silent men’ who prepare the handbooks for the
commercial machines. 1 have referenced the particular handbooks
which I have personally used over the years, but I would like to praise
the efforts of all such authors, as much as a user as a writer.

I would like to acknowledge the helpful discussions I have had with
David Turtle, David Horrocks and Peter Tomlinson. I also would like
to thank Bob Churchhouse for the notes which largely form Section
1.7. Finally I must admit that the inspiration to write this book
stemmed from my associations with minicomputer seminars and
conferences run by Richard Elliott-Green and Bob Parslow (On-line)
and Gerry Cain, Yakup Paker and Peter Morse (Minicom). Finally I
would like to acknowledge the help of Barbara and Jeanette in the
preparation of the manuscript.

MARTIN HEALEY

Vii



Contents

Preface

1 Digital Computers and Their Applications

1.1 Binary representation of information

1.2 Schematic concept of a digital computer

1.3 Communication with the machine - input/output

1.4 The range of digital computers

1.5 Definition of minicomputers and microcomputers

1.6 Some applications of minicomputers and microcomputers

1.7 A history of computer development

1.8 Diagrammatic representation of the components of a
digital computer

2 A Rudimentary Digital Computer

2.1 Introduction

2.2 The pums 1

2.3 The memory unit

2.4 The control unit

2.5 The arithmetic and logic unit

2.6 Input and output

2.7 The control panel

2.8 Instruction sets and addresgfg
2.9 Modifications of the basic ghaghine
2.10 Resumé

40

40
41
42
46
49
53
b5
56
36
88



Contents

3 Further CPU Features

3.1
3.2
3.3
34
3.5
3.6
3.7

Introduction

Synchronous and asynchronous operation
Processor organisation

Further instruction formats and addressing modes
Further instructions

Stack operations

Resumé

4 Input/Output

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9

Basic 1/0 considerations

Programmed 1/0 data transfer

Interrupt systems

Block data transfer

Interfaces and device controllers

Synchronous 1/0 bus

Asynchronous 1/0 bus

Other interfaces

Some practical bus bar and interface logic considerations

4.10 General purpose and standard interfaces

5 Microprocessors

5.1
5.2
5.3
5.4
5.5
5.6

Introduction

Short word length processors
Microcomputers or microprocessor systems
A single chip, 8 bit microprocessor
Instruction sets

Programmable logic arrays

6 Peripheral Devices

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

An introduction to peripheral devices
Parity checking

Alphanumeric devices

Paper tape and card equipment
Graphic display terminals

Bulk data storage devices

Signal processing equipment

Data communication equipment

91

91
92
96
102
110
118
124

126

126
127
131
142
149
152
159
159
162
165

167

167
174
178
183
195
199

202

202
203
204
213
216
220
229
240



Contents

7 Software 944
7.1 General concepts 244
7.2 Developing an applications program 246
7.3 Loaders 248
7.4 Assemblers 252
7.5 High level languages 260
7.6 Editing and debugging programs 265
7.7 Data handling programs 267
7.8 Operating systems 270
7.9 Developing programs for other machines 279
7.10 Summary 281
8 Advanced Features 283
8.1 Modular construction and options 283
8.2 Microprogramming 284
8.3 Arithmetic operations 286
8.4 Memory allocation and protection 299
8.5 Multi-processor and multi-computer systems 294
8.6 Power fail and autorestart 296
8.7 Real time clocks 297
9 Selecting a Computer System 9293
9.1 Specifications ¢ 298
9.2 Choice of supplier 299
9.3 An example of computerising an existing technique in
instrumentation and control 299
9.4 System requirements ' 301
9.5 Summary of selection criteria 302
9.6 Epilogue 304
Appendices
1 Number systems and arithmetic 306
2 Logic Systems 319
3 Integrated circuit technology 334
4 Random access memory 337
Bibliography 349
Index 351



Chapter 1

Digital Computers and Their
Applications

1-1 Binary Representation of Information

A digital computer is an electronic programmable calculating machine
which works on a binary principle. Electronic circuits are used to
represent combinations of binary digits, each of which can be in one of
two states, on or off, high or low, open or closed, etc. Logically these two
states can be termed true or false but the useful parallel with binary
arithmetic makes the terminology 0 or 1 most common; in fact using
the 0/1 notation, logical (Boolean) arithmetic can be closely related to
normal arithmetic using the binary system. Any reader who is not
conversant with binary or logical arithmetic will find the topic well
covered in modern elementary text books; Appendix 1 provides a
summary of the salient features.

Inside a practical computer the two states are represented by
electrical voltages. The actual voltage levels depend upon the technol-
ogy used in the manufacture of the circuits and vary as new manufac-
turing techniques are developed. For some time now the TTL
(transistor—transistor logic) type of circuit has prevailed and logical 0 is
represented by a nominal 0 volts and logical 1 by a nominal 3-5 volts.
Details of the different types of logic systems are given in Appendix 2.

1



Minicomputers and Microprocessors

The more recent MOs Ls1 (metal-oxide-silicon large-scale-integration)
circuits work with different voltages, but such is the current hold of TT1L.
that the MOs Lst circuits are being ‘tailored’ to be compatible at their
inputs and outputs with TTL systems. Of course the original concept of
computers was thought of long before the electronic age, so that
mechanical representation of two state systems was envisaged; indeed
punched paper tape is just such a system where the punched hole
represents, say, 0 and no hole represents1. For such a system however a
tape reader is needed, a device which converts the hole/no-hole system
into TTL compatible voltage levels before such information is useable
by the computer.

Each binary digit is referred to as a bit. To represent a meaningful
piece of information, bits must be used in combinations, e.g. to
represent all possible decimal numbers from 0 to 63, that is the binary
numbers 0 to 111111s, requires 6 bits. Differing situations may well
require differing combinations of bits, but some standardisation has
been introduced, the advantages of which should be clear later. The
most common combination is the 8 bit group, called a byte. A byte is
often too small a combination to be of use inside a computer, so that
each computer, according to its design, has an established fixed word
length. This means that each piece of information is handled inside the
machine as a fixed length binary word. Common word lengths are 8,
12,16, 18, 24 and 32. The more sophisticated machines will allow more
than one word length by allowing groups of bytes, but not any number
of bits. The pros and cons of a particular word length will be discussed
in the following chapters.

The advantage of using a binary system in an electronic machine lies
in the elimination of erroneous interpretation while ‘transporting’
information from one point of the machine to another. Consider a
system in which the numbers from 0 to 10 are represented by
subdividing a 5 volt supply, as in figure 1.1. In an equivalent binary
system four digits are required as shown in figure 1.2. Note that three
digits can represent 0 to 7 and four digits 0 to 15; the fourth digit is
required to represent 0 to 10, although some combinations are
‘wasted’. Thus the number 8 is represented by the voltage level 4-0
volts in the analogue form and by the four voltages 5, 0, 0 and 0 in the
binary or digital form.

Now, in manipulating the information in electronic circuitry, it is
likely that the voltage levels will be distorted; if the 4-0 volts falls to 3-75
volts then it is midway between the representation of 8 and 7 and an
error has been introduced into the system. In the binary system the 0
and 5 volt levels must be distorted to 2-5 volts before ambiguity occurs.
In other words errors occur in the analogue system for voltage level



Digital Computers and Their Applications

+ 5 volts
O

£

I}

%

‘B

2

5

3 —0

S 1

>

©

e

o

[}

o

Vout

O —O0
0

Fig. 1-1 Analogue representation of the integer numbers 0 to 10.

changes equal to about 5% of the 5 volt supply while the digital system
is tolerant to changes of around 50%.

The resolution of the analogue system can be improved by subdivid-
ing each interval and that of the digital system by extending the
number of digits below the LsB (least significant bit) as shown in figures
1.3 and 1.4. The digital system shown in figure 1.4, in which each digit

+ 5 volts

= -
(11 r]

0
23 22 21 20
(most (least
significant) significant)

Fig. 1-2 Binary representation of the integer numbers 0 to 10.



Minicomputers and Microprocessors

+ 5 volts

(10 resistors)

(11 resistors)

7.8

3.9 volts

0.2R

}

o-
0

Fig. 1-3 Two decade analogue representatioh. Note that there are 11 resistors in the
primary chain. The two Rs in parallel with the ten 0-2 R resistors is equivalenttoone Ras in
figure 1.1.

of a decimal number is coded as four binary digits is called binary coded
decimal (Bcp). In practice most digital computers use a pure binary
number code, which is more efficient than BcD, as in Bep only ten of the
sixteen possible combinations of each 4 bits are used. These number
systems are discussed in Appendix 1. The resolution of both systems
(hgures 1.3 and 1.4) can be increased by adding further sections,
however, accuracy is a different problem to resolution. It is no use
adding further decades to figure 1.3 if the accuracy of the most

+ 5 voit
° .

|

o

[o}
o 0/_}
8

N <
L]

Fig. 1-4 Binary representation of two decade decimal systems using four binary digits for
each decade.

4



Digital Computers and Their Applications

significant digit cannot match that of the least significant. On the other
hand the accuracy of the binary system is directly related to the
resolution, since it is fair to assume that the voltage level changes will
never approach the 50% mark at which errors will occur. Thus the
accuracy of a digital system is directly related to the number of bits
allowed in the word used inside the computer. For those readers
conversant with FORTRAN, the Double Precision statement is a direct
application of this principle in which the number of bits used to
represent the number is doubled over the normal representation, with
the attendant increase in accuracy.

In summary a digital computer uses a very simple system to
represent information, the binary system, which gives extraordinarily
high integrity. The penalty paid for using the binary system is the large
numer of digits that are required, e.g. 4 bits to represent one decimal
digit. A digital computer then is a proliferation of electronic two-state
circuits.

1-2 Schematic Concept of a Digital Computer

All digital computers are capable of executing a limited number of
defined operations. Typical operations are to move information from
one part of the computer to another, i.e. to and from the memory and
the cpu (central processing unit), or to take data into the computer from
the input and to send data to the output. Other operations involve
arithmetical and logical functions, such as add two numbers together.
The computer is ordered to execute a particular operation by giving it
an instruction; each instruction is coded as a combination of binary
digits. The computer can only execute one of these instructions at a
time; to perform a required task a sequence of these simple instruc-
tions must be executed. It is worth while stressing at this point just how
simple the instruetions actually are; on many machines even the simple
operation of multiplying two numbers together is performed by
repeated ‘shift and add’ instructions. However the speed at which these
simple instructions can be performed is beyond the comprehension of
the human being. For example, a machine was made to move 8000
pieces of data from one memory location to another and to add each
number to an accumulator. The program was started by depressing a
switch and completion indicated by causing a light bulb to be lit.
Despite the 8000 data moves and 8000 additions, all done sequentially,
it appears to the human operator that the bulb is lit directly by closing
the switch. A high speed idiot is a most appropriate description of a
digital computer!



Minicomputers and Microprocessors

When the computer is required to perform another task it must be
asked to execute another sequence of its own simple instructions.
Thus, since each and every task set by the user of the machine must be
converted into a string of simple machine instructions, the same
machine can be made to perform any such task without any changes to
its electronic components. A sequential list of the instructions to be
performed is called a Machine Code or Object Program; special languages
such as FORTRAN or cOBOL have been developed to simplify the task of
creating the program. Each new problem posed by the user is formu-
lated by writing a new program.

Now each instruction could be fed to the machine via an operator’s
console, one at a time. Such an approach however, would slow the
machine down to the speed of the human operator; use must be made
of the incredible-speed of the electronic circuitry. Thus the developed
program is entered into a store inside the machine, labelled program
memory in figure 1.5. The first instruction is then transferred from the

[

| back-u
| data program P
memor memor bulk store
¥ v (tape, disc)

L"T\—j

: central
input == processing - output
unit (CPU)

T
|
|

-

r—
1

r— bl
| i H
| thmetic
| anthmetic [
operators | & logic unit contre
console (ALU) i unit
l L

Fig. 1-5 Schematic layout of a digital computer.

memory to the cpu(this only takes around 1 microsecond) where it is
‘decoded’ by the control unit and executed. When each instruction is
finished the next instruction is ‘fetched’ from the program memory
and executed. Note that in executing an instruction, data may be
involved and this is made rapidly available by a similar store, labelled
data memory in figure 1.5. In a clever system the next program is
‘loaded’ into another part of the memory while the first program is
executing, avoiding delays. This ‘stored-program’ concept is funda-

6



Digital Computers and Their Applications

mental to the operation of a digital computer; it is the ability to use the
same machine for a variety of problems simply by reprogramming that
gives the machine its vital versatility.

The physical components of the computer are termed hardware,
while the programs that control the machine are termed software.

Each instruction is simply a binary word; a particular combination of
zeros and ones is decoded by the control unitin the cpu. In practice this
means thata complex network of logical electronic elements is switched
in a pattern determined by the bits in the instruction. A few simple
examples are given in Appendix 2, but there are many textbooks
available on the design of digital systems. While each instruction does
not necessarily require the same number of bits to define the required
action, the organisation of the program memory dictates that all
instructions are coded into fixed length words, some bits of which may
be redundant for a particular instruction. There are many considera-
tions to be taken into account in arriving at a choice of word length (the
choice is the machine designers, not the users) as will become clear in
later chapters.

Now both the data and the instructions are stored and manipulated
inside the computer as fixed length combinations of bits. The
memories are ‘word orientated’ that is the instructions are located in
the memory by individually addressing each word - the whole word is
fetched down into the cpu, never particular bits of the word* In
practice all machines above the programmable calculator level use the
same basic word length for both data and instructions so that a
common memory can be employed; in this way jobs with small
programs and large amounts of data and jobs with large programs and
small amounts of data can both be accommodated with a minimum
total memory requirement. The program is loaded into one area of
memory and data into another. The cpu is initialised by being given the
address of the location of the first instruction and proceeds from there
by the logical progression of the program, referring to data in other,
specified locations. It must be stressed that there is no physical
difference between an instruction and a piece of data; both are similar
length binary words. If for any erroneous reason (usually an incor-
rectly written program) a piece of data is fetched into the cpu when an
instruction is expected, then the control section will attempt to decode
and execute it, with some very puzzling results!

It has already been noted that the memory is addressed as fixed
length words and that the contents of any location, either an instruc-
tion or data, must be rapidly available on demand by the cpu. Since the

* Some machines are byte orientated, where memory is split into individually addressed
8 bit bytes. A 16 bit instruction will automatically be fetched as 2 bytes in one operation.

7



Minicomputers and Microprocessors

memory locations may be referenced in any order — a simple program
will work through its instructions from consecutive locations, buta GO
TO in the program will alter the sequence — it must be possible to access
any one location in memory as quickly as any other. Such a memory 1s
said to be a random access memory (RaMm); for the most part this 1s
magnetic core store, with Ls1 semi-conductor memory growing in
application. RaM should be contrasted with a sequentially accessible
memory such as magnetic tape; used as the main memory on a
computer, magnetic tape would be forever spooling back and fore to
locate specific words of information. RAM, normally referred to simply
as memory or even more loosely as core, is expensive and limited in size
by the word length; the reasons for this will be explained in the next
chapter. Thus magnetic tape and magnetic disc are used as back-up or
bulk stores; a program would be copied from the back-up store to
memory as a high-speed block transfer and then executed from
memory.

The number of basic instructions that the machine is capable of
executing is directly related to the sophistication of the electronic logic
circuitry in the cpu. The main feature is the arithmetic and logic unit
(aLU) which actually performs the desired operations on the data.
Associated with the ALU are a number of storage registers, ranging
from one to say sixteen, which act as a ‘scratch-pad’ during arithmetic
processing. These registers store data similar to specific memory
locations, but are high speed TTL registers, the data from which can be
accessed in tens of nanoseconds* rather than the microseconds of core
memory. In fact the fixed word length must put an upper limit on the
number of types of instruction that can be coded; this often sets the
limit on the complexity of the cpu rather than the actual circuit design.
It is of no use providing extra functions in the electronics if these extra
functions cannot be ‘dialled-up’ by the instruction!

A word of information, say 16 bits as an example, can be transferred
inside the machine, e.g. moved from memory to the ALU, Inone of two
modes, either serial or parallel. Serial mode means that the word is
transferred one bit at a time along a single path in 16 time intervals, the
16 bits being reformed as one word before being used. Parallel mode
means that 16 paths are provided and the whole word is transmitted in
one time interval. Clearly serial mode is cheaper but slower than
parallel mode. All modern computers; in which hardware costs have
become less important, thanks to integrated circuit technology; work
exclusively in parallel mode, increased speed being the prime objec-
tive. One commonly encountered example of serial transmission of

. s . o
* A nanosecond is a thousandth of a microsecond, that is there are 10° nanoseconds per
second.

8



