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Preface

Neural computing techniques are expanding rapidly, both in number and
power. Research and application activity have produced important new par-
adigms, revived interest in some that have seen long use, and resurrected a
few that were all but moribund. As a result, tools available to the artificial
neural network practitioner have been substantially increased. Finding and
evaluating these methods can be a serious problem. With more than 1000
papers published in 1992 alone, it is difficult to sort the important from the
trivial, the innovative from the derivative, and the proven from the specu-
lative. This book attempts this separation, providing the reader with a set
of useful methods, along with enough theory and applications information
to apply them.

Choosing the topics for this volume was difficult; dozens of paradigms with
hundreds of variations were considered for inclusion. To select among what
seemed at times an excess of riches, the following five major criteria were
used:

1. Modernity: The approach must be new, but only in the sense that
it has only recently received interest and application. This lib-
eral definition of “new” resulted in the inclusion of recent work
as well as some produced in the 1960’s that is only now receiving
proper appreciation.

2. Utility: Only paradigms proven, or showing exceptional promise
to be useful, advantageous, and important were considered. This
necessarily excluded many minor improvements and purely the-
oretical results that may lead to future breakthroughs.
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3. Trainability: The method must be capable of some form of learn-
ing, either supervised or unsupervised. A set of operations
involving a training set must change the function of the network
in some desirable way.

4. Generalization: Similar inputs must produce similar responses.
This is consistent with human abilities. For example, a young
child learns to recognize his/her mother despite variations in
lighting, distance, angle, and clothing. While no artificial neural
network has duplicated the recognition ability of a human tod-
dler, significant ability to generalize has been demonstrated.

5. Concurrent Operation: It must be possible to make efficient use
of a large number of processors; ideally, computational rate would
increase linearly with the number of processors employed.

Of these criteria, the last may prove the most significant in the long run.
The computational load implied by important, real-time neural network
applications exceeds the capacity of today’s fastest super computers.
Throughput must be increased by orders of magnitude if neural networks
are to be applied to important applications such as real-time image
processing.

Since the early 1960’s, hardware improvements have doubled computa-
tion rates every two or three years (at constant cost). We cannot rely on this
to continue much longer as fundamental limits are being approached.
Throughput of single processors will soon be limited by the speed of light.
Thus, in the near future, speed increases must come from efficient use of
multiprocessor systems rather than brute force acceleration of single proces-
sor hardware.

While multiprocessor hardware is readily available, there are few algo-
rithms that can efficiently employ a large number of concurrent processors.
Unfortunately, most algorithms devised over the past several thousand years
are inherently serial, perhaps mirroring the sequential nature of human
problem solving.

Artificial neural networks promise a solution. Their computation is inher-
ently parallel, modeled after the human brain that performs its functions
through the use of about 10! simple, slow processors (neurons) operating
concurrently.

It is this parallel computing ability that most clearly distinguishes arti-
ficial neural network paradigms from more conventional computational
approaches. Indeed, some neural networks are well-known mathematical
methods, recast for efficient concurrent computation. Some researchers object
to calling these neural networks, citing their lack of biological plausibility;
there are no known structures in the brain that perform similar operations.
This argument points out a fundamental split between those who are using
artificial neural networks to study brain function, versus those who view
them as a solution to practical engineering problems. This book will take
the latter position (without denigrating the former), due to the inclination
of the author and the perceived preponderance of interest.



PREFACE v

Inevitably, much important work had to be excluded even though it sat-
isfied all of the criteria for inclusion. For example, some was reluctantly
omitted that is promising but not fully developed; perhaps it can be included
in future volumes as it matures.

As artificial neural networks emerge from the research labs into real-world
applications, a broad range of scientifically trained practitioners need to
understand how they can use the new techniques. Many have found this to
be difficult, as the literature on artificial neural networks is often rendered
opaque by the diversity of terminology, the lack of standard notation, and
the use of sophisticated mathematics. While professional mathematicians
have learned to deal with this problem, many competent researchers in other
fields have found important works to be inaccessible. This situation has
slowed the dissemination of knowledge and impeded the application of neural
network technology.

This book attempts to bridge the gap. Bringing together a diverse set of
important paradigms, its explanations are intended to make them under-
standable to a broad range of scientific professionals. Notation is standard-
ized; qualitative explanations precede the quantitative, and illustrations are
used freely to clarify obscure concepts. Nowhere does the mathematics exceed
that provided by an undergraduate degree in the sciences, not out of conde-
scension, but because it is simply unnecessary to support applications-ori-
ented explanations. Throughout, the emphasis is on clarity rather than
elegance, explanation rather than proof, and exposition rather than mathe-
matical rigor. Still, there has been no deliberate compromise with accuracy;
the reader should have nothing to unlearn when going on to the more spe-
cialized and theoretical works listed in the references.

In no way does this emphasis imply that the mathematical rigor and deep
theoretical study are unimportant. In fact, the field suffers from the general
poverty of rigorous theory, and its progress depends heavily on the success
of the theoreticians. For those so inclined, a substantial reference section at
the end of each chapter leads to the wealth of research papers that provide
the theoretical and mathematical support for the paradigms in the book.

These references were selected for clarity of presentation; there was no
attempt to be complete or to determine priority. I apologize in advance to
authors who find that their earlier work has been excluded.

The explanations in this book are in algorithmic form. This is consistent
with the way that most neural computing is now being done—on general-
purpose digital computers. For this reason, difference equations are used
instead of differential equations, and explanations tend to be program ori-
ented. It is assumed that the reader wishes to apply artificial neural net-
works, not just to study them; this book is written to facilitate that objective.

The chapters have been written to be largely self-contained. This makes
information on a topic accessible without reading the entire book, or paging
back to references in previous chapters. This policy implies repetition; in
some cases the same concepts are presented in two or more chapters. It is
hoped that the utility of this organization will make the redundancy
worthwhile.
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Some authors avoid the use of the term “‘neuron,” preferring names such
as “unit” for this building block. While this respects the profound simplicity
of artificial neurons relative to their biological counterparts, it sacrifices
comprehensibility, a major objective of this book. For this reason I shall,
without further apology, refer to the computational elements of artificial
neural networks as neurons.

While this is not a book for beginners, neither does it assume great exper-
tise in the field of artificial neural networks. If you need a review of funda-
mentals, I recommend the book Neutral Computing Theory and Practice, Van
Nostrand Reinhold, 1989; it explains the theory that underlies most of the
modern paradigms. Equipped with this background and an eagerness to learn
more about neural computing, this book provides the logical next step.

Philip D. Wasserman
Cupertino, CA
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Fundamentals

NEURAL NETWORKS—A UNIFYING PERSPECTIVE

The current interest in artificial neural networks is largely a result of their
ability to mimic natural intelligence. Although limited and imperfect, arti-
ficial neural networks have, in some applications, performed impressively,
in other cases, disappointingly. This mix of failure and success offers the
tantalizing suggestion that research will eventually produce artificial sys-
tems capable of performing a large percentage of the tasks that now require
human intelligence, hence the exponentially increasing growth of neural
network research.

As a result of this research, artificial neural networks have been used in
a broad range of applications. These include pattern classification, pattern
completion, function approximation, optimization, prediction, and automatic
control. Furthermore, research has produced a large number of network par-
adigms, each with its own distinctive name.

Faced with this diversity one might conclude that the field is highly frag-
mented, consisting of a set of unrelated methods and objectives. Despite
appearances, all artificial neural networks perform essentially the same
function: They accept a set of inputs (an input vector) and produce a corre-
sponding set of outputs (an output vector), an operation called vector map-
ping. Likewise, all neural network applications are special cases of vector
mapping.

As shown in Figure 1-1, a vector mapper accepts a set of inputs and pro-
duces a set of outputs according to some mapping relationship encoded in its

1
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Figure 1-1. A general view of a neural network as a vector mapper.

structure. For example, Figure 1-2 shows a system that maps an input vector
with three components—height, weight, and age, into an output vector with
two components—life expectancy and insurance premium. Seen from this
unifying viewpoint, the various paradigms may be viewed as related
approaches, all attempting to solve the same problem.

The nature of the mapping relationship between input and output vectors
is defined by the values of free variables (often called weights) within the
network. Figure 1-3 shows a configuration where weights (the numbers on

A
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N v LIFE EXPECTANCY
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(height, weight, age) ————— (life expectancy, insurance premium)

Figure 1-2. Vector mapping accepts one vector (or point) and converts it
into another vector (or point).

Output
Vector

Input
Vector

Figure 1-3. Weights in a neural network scale the output value from one
processing cell to another.
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the arcs) scale the inputs to processing units (circles). Figure 1-4 shows a
special case, the feed-forward network, in which the signals flow only from
input to output. The mapping relationship between input and output vectors
may be static, where each application of a given input vector always pro-
duces the same output vector, or it may be a dynamic, where the output
produced depends upon previous, as well as current, inputs and/or outputs.
Since feed-forward networks have no memory, they are only capable of
implementing static mappings. Adding feedback allows the network to pro-
duce dynamic mappings.

Different network paradigms vary greatly in the range of mappings that
they can represent. Determining the representational limits for each net-
work type is currently an active area of research. However, recent work on
feed-forward networks with one hidden layer (Hornik, Stinchcombe, and
White, 1989) has produced a rigorous proof that this functional relationship
may be, for all practical purposes, arbitrarily complicated (see Chapter 11).
Thus, at least some artificial neural networks are quite general in their vec-
tor mapping capability. Without changing internal topology, the same net-
work is capable of producing any functional relationship likely to be
encountered by changing its weights.

Vector mapping may be heteroassociative or autoassociative. Heteroas-
sociative mappers are the general case. They produce an output vector that
can be different from the input vector. Autoassociative mappers are a subset
that yields an output vector that is identical to the input vector on which it
was trained. This seems unpromising. However, certain autoassociative par-
adigms have the ability to produce the desired output vector with a partially
incomplete or incorrect input vector. This characteristic has made them use-
ful in pattern completion and noise rejection applications.

Subsequent chapters will present specific artificial neural network para-
digms, distinguishing each by its topology, algorithms, benefits, and disad-
vantages. In the remainder of this chapter the emphasis will be on the
underlying principles, thereby providing a unifying framework and a set of
terminology that will make it easier to understand the paradigms in this
book, as well as other methods encountered elsewhere.

Input
Vector

Output
Vector

Figure 1-4. In a feed-forward network, weights may be nonzero only in
the feed-forward direction.
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LEARNING

Artificial neural networks learn from experience. This characteristic, per-
haps more than any other, has created the current interest in these methods.
In addition to the anthropomorphic implications (that are usually inappro-
priate), learning offers a powerful alternative to programming.

Learning methods may be broadly grouped as supervised and unsuper-
vised, with a great many paradigms implementing each method.

Supervised Learning

The original Perceptron and, more recently, backpropagation are examples
of supervised learning paradigms. In supervised learning, the network is
trained on a training set consisting of vector pairs. One vector is applied to
the input of the network; the other is used as a “target” representing the
desired output.

Training is accomplished by adjusting the network weights so as to min-
imize the difference between the desired and actual network outputs. This
process may be an iterative procedure, or weights may be calculated by
closed-form equations. Paradigms using the latter form of training may seem
to be so far from the biological method that they fail to qualify as an artificial
neural network. Nevertheless, such methods are useful, and satisfy a broad
definition of artificial neural networks.

In iterative training, application of an input vector causes the network to
produce an output vector. This is compared to the target vector, thereby pro-
ducing an error signal which is then used to modify the network weights.
This weight correction may be general, equally applied as a reinforcement
to all parts of the network, or it may be specific, with each weight receiving
an appropriate adjustment. In either case the weight adjustment is intended
to be in a direction that reduces the difference between the output and target
vectors. Vectors from the training set are applied to the network repeatedly
until the error is at an acceptably low value. If the training process is suc-
cessful, the network is capable of performing the desired mapping.

Unsupervised Learning

Unsupervised learning, sometimes called self-organization (Kohonen 1988),
requires only input vectors to train the network. During the training process
the network weights are adjusted so that similar inputs produce similar out-
puts. This is accomplished by the training algorithm that extracts statistical
regularities from the training set, representing them as the values of net-
work weights. Self-organization is reminiscent of the manner in which, in
some cases, the human brain modifies its structure under the influence of its
experiences without a “teacher.”

Applications of unsupervised learning have been limited, however, used
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in combination with other paradigms they have produced useful results, such
as the counterpropagation method (Hecht-Nielsen 1987).

No network learning paradigm is ideal; all suffer from various limitations
and pathologies. For this reason, network training algorithms occupy more
research hours than any other aspect of artificial neural networks. Speed,
reliability, and generality are important factors in evaluating a training
algorithm; improvements are being made in all of these areas.

There are many questions surrounding the learning process. For example:

1. Is the network capable of the desired representation? Does a set
of weights exist that will yield the desired mapping?

2. Is the training algorithm capable of adjusting the weights to
these values?

3. Will the network train to the best set of weights?

4. Will the network respond correctly to input vectors that are sim-
ilar, but not identical, to the training vectors? In other words,
does the network generalize well enough?

5. Does the training process require a reasonable amount of
computation?

6. Is the training set adequate? Does it fully represent the set of
input vectors to be encountered in the actual application?

Unfortunately, these questions do not, in general, yet have satisfactory
answers. They will be discussed in more detail in Chapter 11, but applying
an artificial neural network today requires experience, judgment, and pati-
ence. One is often uncertain if a given network, training algorithm, and
training set will produce the desired results. Indeed, a certain amount of
trial and error seems inevitable with our current state of knowledge. It is
fortunate the networks are so robust and the results so striking, otherwise
researchers would have long ago directed their efforts toward less ambiguous
methods.

GENERALIZATION

The real world suffers from a lack of consistency; two experiences are seldom
identical in every detail. Humans accommodate this variability with little
effort. For example, we can recognize a friend’s voice on the telephone despite
a great deal of noise, limited frequency response, and variations in ampli-
tude and pitch.

For a neural network to be useful it must accommodate this variability,
producing the correct output vector despite insignificant deviations between
the input and test vectors. This ability is called generalization.

Generalization may be quantitatively defined for supervised training if
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the training set is considered to be randomly selected examples from a spe-
cific (but unknown) probability distribution. First, a network is trained on
such a set, and the resulting error rate e; is measured. Next, a new set of
input/output vector pairs is selected from the same distribution, each input
vector is applied to the network, the network’s response is compared to the
desired response (the output vector), and another error rate e, is calculated.
The |e; — e;| is then a measure of the generalizing ability of the network.
More sophisticated methods of measuring generalization are in common use;
these will be discussed in Chapter 11.

Generalization as Interpolation

Generalization in neural networks may be viewed as multidimensional
interpolation. Poggio and Girosi (1990) use this idea to provide an insightful
treatment of artificial neural networks. To see how this idea relates to neural
networks, suppose that we have a one-dimensional problem; the input vec-
tors have one component. Suppose also that we are given as a training set
the five points plotted in Figure 1-5. We generally assume that these points
are samples of some underlying curve. We interpolate between these points
so that given intermediate values for x we can determine values for y = F(x)
that lie on the underlying (and unknown) curve.

0 Sth, 7th, and 9th Degree Polynomial Approximations

f(x)

b

-30 A " L i i
0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 1-5. An example of smooth continuous interpolation between
known points on the X-Y graph.
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Three smooth curves have been drawn through the five points, generated
by 5th-, 7th-, and 9th-degree polynomial curve fits. Each line constitutes an
interpolation, defining a continuum of interpolated points between each of
the known points. Since there are three such curves, all of which fit the avail-
able information (the training set) perfectly, how can one decide which curve
provides “‘correct” values for intermediate points? In fact, without further
information, all three curves are equally valid. We may prefer the smoothest
curve based on the lowest degree approximation, however, this is based upon
a premise that may be false; we have no certain knowledge of any points
other than the five that have been given.

This example demonstrates a fundamental aspect of generalization; that
is, with only the data points in a training set, determining other points is
an ill-posed problem: There is no unique solution. Therefore, we must supply
additional constraints based upon our knowledge of the application. For
example, we may choose the 5th-degree fit because we know that the system
that generated the points produces smooth curves, or, lacking any other
information, we may choose the smoothest curve because we feel that nature
favors simple solutions. Such decisions constitute a bias; they restrict the
permissible approximations to those involving polynomials with few coeffi-
cients. Similarly, we may decide to restrict our neural network topology to
the smallest number of weights that produce accurate performance on the
training set. While such decisions are often made, we must recognize them
as arbitrary and subject to error. In Chapter 11 we develop objective methods
for sizing a network to produce good generalization.

Interpolation (generalization) requires an adequate number of points
(training set size). Obviously, if there are only a few points (a sparse training
set) there is much uncertainty regarding the shape of the curve between
points. Much has been written about this problem, and Chapter 11 treats it
in detail. It is appropriate here to state merely that there is a close relation-
ship between the number of elements in the input vector (which determines
the number of weights in the input layer of the network), the total number
of nodes and weights in the network, and the number of vectors required in
the training set to generalize with acceptable accuracy.

CLASSIFICATION

Classification, a special case of vector mapping, has an extremely broad range
of applications. Here, the network operates to assign each input vector to a
category. For example, an input vector might represent the values of the
leading economic indicators on a specific date; the two classes might be “Dow
Jones Up” and “Dow Jones Down” on the following day.

A classifier may be implemented by modifying a general vector mapping
network to produce mutually exclusive binary outputs, namely, an output
vector whose components are either 1 or 0. Only a single output (represent-
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ing category membership) is 1 for a given input vector; all other outputs are

Classification is a central concern in the study of artificial intelligence.
An efficient and effective replication of the human’s ability to classify pat-
terns would open the door to a host of important applications. These include
interpretation of handwriting, connected speech, and visual images. Unfor-
tunately, this goal has been elusive. In most cases humans still perform these
tasks far better than any machine devised to date.

The traditional classifiers are either ad hoc computer programs or statis-
tical algorithms. Nonstatistical computer programs written for pattern rec-
ognition are often “brittle,” and easily broken by new data. Such a program
will often successfully recognize all examples seen so far, but a new pattern
will cause it to fail. This is a consequence of the nature of computer pro-
grams; small variations in the input data can produce disproportionately
large effects. Thus, it has proven difficult to devise programs that generalize;
that produce correct responses to inputs that are similar but not identical to
those seen previously. Programmers often find themselves in a frustrating
situation: They can correctly classify patterns themselves, but are unable to
program a machine to do the task with similar accuracy.

Statistical classifiers have been more successful. Bayesian classifiers and
their artificial neural network counterparts are presented in Chapter 3.

A number of artificial neural network paradigms show promise as vector
classifiers. Learning from experience rather than being programmed for each
problem, they generalize naturally, producing correct answers despite the
highly variable, noisy, inconsistent data that is characteristic of real-world
problems.

Because of the importance of the classification problem and the power of
the neural network approach, a substantial portion of this book will be
devoted to the study of this application.

The classification decision is based both upon measurements of the object’s
characteristics and upon a data base containing information about the char-
acteristics and classifications of similar objects. Therefore, implicit in this
process is the collection of data that characterize the statistical properties of
the objects being classified.

For example, a lumber mill might wish to automatically separate pieces
of pine, spruce, oak, and redwood, putting them into separate bins. This clas-
sification could be accomplished by making a set of measurements on the
piece, such as color, density, hardness, etc. This set of measurements,
expressed numerically, forms a feature vector for that piece, where each
measurement is a vector component. The feature vector is compared with a
set of recorded feature vectors and their known classifications, those com-
prising a training set. By some method, a decision is made regarding the
correct classification.

Often the classification problem is complicated by the poor quality of the
data. Measurements of the sample as well as those in the training set may
be noisy and inaccurate. In addition, the training set may be too small to



