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Preface

This monograph contains the worked out and expanded notes of the lecture
series I presented at the 37-TH PROBABILITY SUMMER SCHOOL IN SAINT-
FLOUR, 8-21 JuLy 2007. The goal I had set myself for these lectures was to
provide an up-to-date account of some key developments in the mathematical
theory of polymer chains, focusing on a number of models that are at the
heart of the subject. In order to achieve this goal, I decided to limit myself
to single polymers living on a lattice, to consider only models for which a
transparent picture has emerged, and from the latter select those that lead to
challenging open questions capable of attracting future research. Needless to
say, my choice was influenced by my personal taste and involvement.

Polymers are studied intensively in mathematics, physics, chemistry and
biology. Our focus will lie at the interface between probability theory and equi-
librium statistical physics. To fully appreciate the results to be described, the
reader needs a basic knowledge of both these areas. No other background is
required. We will look at a number of paradigm models that exhibit interesting
phenomena. The key objects of interest will be free energies, phase transitions
as a function of underlying parameters and associated critical behavior, scaling
properties of path measures in the different phases and associated invariance
principles, as well as effects of randomness in the interactions. The empha-
sis will be on techniques coming from large deviation theory, combinatorics,
ergodic theory and variational calculus.

We start with TWO BASIC MODELS of polymer chains: simple random walk
and self-avoiding walk. After having collected a few key properties of these
models, which serve to set the stage, we turn to the main body of the mono-
graph, which is divided into two parts.

In PART A, we look at four models of POLYMERS WITH SELF-INTERACTION:
(1) soft polymers, where self-intersections are not forbidden but are penalized,
resulting in a repulsive interaction modeling the effect of “steric hindrance”;
(2) elastic polymers, where self-intersections are penalized in a way that de-
pends on their distance along the chain, in such a way that long loops are
less penalized than short loops; (3) polymer collapse, where due to attractive
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interactions the polymer may roll itself up to form a ball; (4) polymer ad-
sorption, where the polymer interacts with a linear substrate to which it may
be attracted, either moving on both sides of the substrate (pinning at an
interface) or staying on one side of the substrate (wetting of a surface).

In PART B, we look at five models of POLYMERS IN RANDOM ENVIRON-
MENT: (1) charged polymers, where positive and negative charges are arranged
randomly along the chain, resulting in a mixture of repulsive and attractive in-
teractions; (2) copolymers near a linear selective interface, where the polymer
consists of a random concatenation of two types of monomers that interact
differently with two solvents separated by a linear interface; (3) copolymers
near a random selective interface, where the linear interface is replaced by a
percolation-type interface; (4) random pinning and wetting of polymers, where
the polymer interacts with a linear interface or surface consisting of different
types of atoms or molecules arranged randomly; (5) polymers in a random po-
tential, where the polymer interacts with different types of atoms or molecules
arranged randomly in space.

All the results that are presented come with a complete mathematical
proof. Nonetheless, there are a few places where proofs are a bit sketchy and
the reader is referred to the literature for further details. Not doing so would
have meant lengthening the exposition considerably. Still, even where proofs
are tight I have taken care that the reader can always hold on to the main
line of the argument.

All chapters can be read essentially independently. Each chapter tells a
story that is self-contained, both in terms of content and of notation. Each
chapter ends with a brief description of a number of important extensions
(added to further enlarge the panorama) and with a number of challenges for
the future (ranging from “doable in principle” via “very tough indeed” to “al-
most beyond hope”). An index with key words is added after the references,
to help the reader connect the terminology that is used in the different chap-
ters. For the topics covered in Parts A and B, I believe to have caught most
of the relevant mathematical literature. There is a huge literature in physics
and chemistry, of which only a few snapshots are being offered.

The choice I made of what material to cover was not driven by content
alone. I also wanted to exhibit a number of key techniques that are currently
available in the area and are being developed further. Thus, the reader will en-
counter the method of local times (Chapters 3, 6 and 8), large deviations and
variational calculus (Chapters 3, 6, 9 and 10), the lace expansion in combi-
nation with the induction approach (Chapters 4 and 5), generating functions
(Chapters 6 and 7), the method of excursions (Chapters 7, 9 and 11), the
subadditive ergodic theorem (Chapters 9, 10 and 11), partial annealing esti-
mates (Chapters 9, 10 and 11), coarse-graining (Chapter 10), and martingales
(Chapter 12).

I greatly benefited from reading overview works that address various
mathematical aspects of polymers, in particular, the monographs by Barber
and Ninham [12], Madras and Slade [230], Hughes [175], Vanderzande [300],
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van der Hofstad [154], Sznitman [288], Janse van Rensburg [188], Slade [280],
and Giacomin [116], the review papers by van der Hofstad and Konig [165],
Bolthausen [28], and Soteros and Whittington [283], as well as the PhD theses
of Caravenna [51], Pétrélis [263], and Vargas [302]. If the present monograph
contributes towards making the area more accessible to a broad mathematical
readership, as the above works do, then I will consider my goal reached.

While planning this monograph, I decided not to touch upon combinatorial
counting techniques, exact enumeration methods and power series analysis,
which provide invaluable insight for models that are too hard to handle ana-
lytically. Nor will the reader find a description of knotted polymers, which
have many fascinating properties and a broad range of applications, nor
of branched polymers, which are related to superprocesses arising as scal-
ing limit. These are rapidly growing subjects, which the reader is invited
to explore. For overviews, see Dusek [93], Guttmann [137], Orlandini and
Whittington [257], and Guttmann [138]. Similarly, there is no discussion of
models of two or more polymers interacting with each other, like in a poly-
mer melt, nor of models dealing with dynamical aspects of polymers, such as
reptation in a polymer melt. For overviews, see de Gennes [114], and Doi and
Edwards [92]. The literature offers plenty of possibilities for the latter two
topics as well, but so far the mathematics is rather thin.

I am grateful to Marek Biskup, Erwin Bolthausen, Andreas Greven,
Remco van der Hofstad, Wolfgang Konig, Nicolas Pétrélis, Gordon Slade,
Stu Whittington and Mario Wiithrich for co-authoring the joint papers
we wrote on random polymers and for the many interesting and enjoyable
discussions we have shared over the years. I am further grateful to Anton
Bovier, Matthias Birkner, Thierry Bodineau, Francesco Caravenna, Francis
Comets, Giambattista Giacomin, Tony Guttmann, Neil O’Connell, Andrew
Rechnitzer, Chris Soteros, Alain-Sol Sznitman, Fabio Toninelli, Ivan Velenik
and Lorenzo Zambotti for fruitful exchange on various occasions.

Matthias Birkner, Giambattista Giacomin, Remco van der Hofstad and
Gordon Slade read parts of the prefinal draft and offered a number of use-
ful remarks. Stu Whittington commented on three drafts in various stages of
development, patiently answered a long list of questions and provided many
references. He generously offered his guidance, which has been both stimu-
lating and reassuring. Nicolas Pétrélis helped me to prepare my lectures in
Saint-Flour and assisted me afterwards to finish the present monograph. Not
only did we spend many hours together discussing the content, Nicolas care-
fully went through the full text and drew many of the figures. He was an
indispensable companion in bringing the whole enterprise to a good end.

It is a pleasure to thank the staff of EURANDOM in Eindhoven for provid-
ing so many opportunities to do quiet research in a stimulating environment.
It continues to be an honor and a pleasure to be affiliated with the institute,
where most of the above colleagues are at home. Over the years, my research
has been amply supported by NWO (Netherlands Organization for Scientific
Research), which I gratefully acknowledge as well.
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Finally, I thank Jean Picard for the invitation to lecture at the Saint-Flour
summer school and for the pleasant exchange we have had before, during and
after the event.
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Introduction

1.1 What is a Polymer?

A polymer is a large molecule consisting of monomers that are tied together
by chemical bonds. The monomers can be either small units (such as CH;
in polyethylene; see Fig.1.1) or larger units with an internal structure (such
as the adenine-thymine and cytosine-guanine base pairs in the DNA double
helix; see Fig. 1.2). Polymers abound in nature because of the multivalency of
atoms like carbon, silicon, oxygen, nitrogen, sulfur and phosphorus, which are
capable of forming long concatenated structures.

Polymer Classification. Polymers come in two varieties: (1) HOMOPOLY-
MERS, with all their monomers identical (such as polyethylene); (2) copoLy-
MERS, with two or more different types of monomer (such as DNA). The order
of the monomer types in copolymers can be either periodic (e.g. in agar) or
random (e.g. in carrageenan).

An important classification of polymers is into SYNTHETIC POLYMERS
(such as nylon, polyethylene and polystyrene) and NATURAL POLYMERS (also
called biopolymers). Major subclasses of the latter are: (a) proteins (strings
of amino-acids), the chief constituents of all living objects, carrying out a
multitude of tasks; (b) nucleic acids (DNA, RNA), the building blocks of
genes that are the very core of life processes; (c) polysaccharides (e.g. agar,
amylose, carrageenan, cellulose), which form part of the structure of animals
and plants and provide an energy source; (d) lignin (plant cement), which
fills up the space between cellulose fibres; (e) rubber, occurring in the fluid of
latex cells in certain trees and shrubs. Apart from (a)—(e), which are organic
materials, clays and minerals are inorganic examples of natural polymers.
Synthetic polymers typically are homopolymers, natural polymers typically
are copolymers (with notable exceptions). Bacterial polysaccharides tend to
be periodic, plant polysaccharides tend to be random.

Yet another classification of polymers is into LINEAR and BRANCHED. In
the former, the monomers have one reactive group (such as CHj), leading

F. den Hollander, Random Polymers, 1
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2 1 Introduction

Fig. 1.2. DNA.

to a linear organization as a result of the polymerization process. In the lat-
ter, the monomers have two or more reactive groups (such as hydroxy acid),
leading to an intricate network with multiple cross connections. Most nat-
ural polymers are linear, like DNA, RNA, proteins and the polysaccharides
agar, alginate, amylose, carrageenan and cellulose. Some polysaccharides are
branched, like amylopectin. Many synthetic polymers are linear, and many
are branched. An example of a branched polymer is rubber, both natural and
synthetic.

Polymerization. The chemical process of building a polymer from monomers
is called polymerization. The size of a polymer, i.e., the number of constituent
monomers (also called the degree of polymerization) may vary from 10 up to
10'° (smaller molecules do not qualify to be called polymers, larger molecules
have not been recorded). Human DNA has 10° — 10'° base pairs, lignin
consists of 106 — 107 phenyl-propanes, while polysaccharides carry 103 — 104
sugar units. Both in synthetic and in natural polymers, the size distribution
may either be broad, with numbers varying significantly from polymer to
polymer (e.g. in nylons and in polysaccharides) or be narrow (e.g. in pro-
teins and in DNA). In synthetic polymers the size distribution can be made
narrow through specific polymerization methods. The size of the monomer
units varies from 1.5A (for CHy in polyethylene) to 20 A (for the base pairs
in DNA), with 1A = 10~“m. For more background on the structure of
polymers, the reader is referred to Green and Milne [129].

The chemical bonds in a polymer are flexible, so that the polymer can
arrange itself in many different spatial configurations. The longer the chain,
the more involved these configurations tend to be. For instance, the polymer
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can wind around itself to form knots, can be extended due to repulsive forces
between the monomers as a result of excluded-volume, or can collapse to a
ball due to attractive van der Waals forces between the monomers or repulsive
forces between the monomers and a poor solvent. It can also interact with a
surface on which it may or may not be adsorbed, or it can live in a slit between
two confining surfaces.

As mentioned above, the polymer can be either homogeneous (homopoly-
mer) or inhomogeneous (copolymer). A typical example of the latter is a
copolymer whose monomers carry positive and negative charges, randomly
arranged along the chain. Another example is a copolymer consisting of hy-
drophobic and hydrophilic monomers. If such a copolymer is placed near an
interface separating oil and water, then it may try to wiggle around the in-
terface in order to match the monomers as much as possible, and in doing so
stay closely tied to the interface.

Targets. In the present monograph we will consider various different models
of linear polymers, aimed at describing a variety of different physical set-
tings, of the type alluded to above. Key quantities of interest will be the
number of different spatial configurations, the typical end-to-end distance
(subdiffusive, diffusive or superdiffusive), the space-time scaling limit, the frac-
tion of monomers at an interface or adsorbed onto a surface, the average length
and height of excursions away from an interface or a surface, all typically in
the limit as the polymer gets long. We will pay special attention to the free
energy of the polymer in this limit, and to the presence of phase transitions
as a function of underlying model parameters, signalling drastic changes in
behavior when these parameters cross critical values. We will also study the
effect of randomness in the interactions.

Classical monographs on polymers with a physical and chemical orienta-
tion are Flory [102] and de Gennes [114]. (It is worthwhile to read their Nobel
lectures: Flory [103] and de Gennes [115].) Monographs with a mathematical
orientation are Barber and Ninham [12], Madras and Slade [230], Hughes [175],
Vanderzande [300], Janse van Rensburg [188] and Giacomin [116].

1.2 What is the Model Setting?

Our polymers will live on the d-dimensional Euclidean lattice Z¢, d > 1. They
will be modelled as random paths on this lattice, where the monomers are the
vertices in the path, and the chemical bonds connecting the monomers are
the edges in the path.

The choice of model will depend on two key objects. Namely, for each
n € Ng = NU {0} we need to specify

W,, = a collection of allowed n-step paths on Z¢,

(1.1)

H, = a Hamiltonian that associates an energy to each path in W,.
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As we will see, there is flexibility in the choice of W,, depending on the
particular application we have in mind. We will be considering both undirected
and directed paths (see Figs. 1.3 and 1.4). The choice of H,, will be driven by
the underlying physics, and captures the interaction of the polymer with itself
and/or its environment. Typically, H, depends on one or two parameters,
including temperature.

For each n € Ny, the random polymer of length n is defined by assigning
to each w € W,, a probability given by

1
Pi(w)= Z—e‘H"(“’), w € Wy, (1.2)

n
where Z,, is the normalizing partition sum. This is called the Gibbs measure
associated with the pair (W,,, H,,), and it describes the polymer in equilibrium
with itself and/or its environment (at fixed temperature and fixed polymer

Fig. 1.3. A 19-step path on Z%, modeling a polymer in the plane with 20 monomers
tied together by 19 chemical bonds. The steps in the path are: 3 east, 2 south, 1
west, 4 north, 5 west, 2 east and 2 north.

A T L

Fig. 1.4. Three examples of directed paths on Z?, in combinatorics commonly
referred to as ballot paths (with allowed steps ,” or ), generalized ballot paths
(with allowed steps /', — and ), and partially directed self-avoiding walks (with
allowed steps 1, | or —, subject to no self-intersections). Ballot paths and generalized
ballot paths that begin and end at the same horizontal line and lie entirely on
or above this line are called Dyck paths, repectively, Motzkin paths. Without the
one-sidedness restriction they are called bilateral Dyck paths, respectively, bilateral
Motzkin paths.

®




1.2 What is the Model Setting? 5

length). Under this Gibbs measure, paths with a low energy have a high
probability, while paths with a high energy have a low probability.’

Note that (P,)nen in general is not a consistent family of probability
distributions, i.e., P, is not the projection of P,,; obtained by summing out
the position of the (n + 1)-st monomer. Rather, for each n we have a different
distribution, modeling a polymer chain of a fixed length.

The polymer measure in (1.2) will be our main focus in PART A. In PART
B we will consider models in which the Hamiltonian also depends on a ran-
dom environment (e.g. randomly ordered charges or monomer types). We will
generically denote this random environment by w and its probability distribu-
tion by IP. We will write H¥ to exhibit the w-dependence of the Hamiltonian.
Three types of Gibbs measures will make their appearance:

(1) The quenched Gibbs measure
P(w) = zi,«; e HI@) e W, W)
(2) The average quenched Gibbs measure
E(Pyw) = [ PR@)P@),  we W, (19)
(3) The annealed Gibbs measure

P,(w) = ZL /e_H:("’) P(dw), w € W, (1.5)

n

The latter is used to model a polymer whose random environment is not
frozen but takes part in the equilibration. We will mostly be interested in
the behavior of the polymer in the limit as n — oo, typically after some
appropriate scaling.?

We will not (!) consider models where the length or the configuration
of the polymer changes with time (e.g. due to growing or shrinking, or to
a Metropolis dynamics associated with the Hamiltonian for an appropriate
choice of allowed transitions). These non-equilibrium situations are very in-
teresting and challenging indeed, but so far the available mathematics is very
thin.

! W. Kuhn, in the 1930’s, seems to have been the first to put forward the “en-
semble description” of polymers given by (1.2) (see Flory [100], Chapter I). The
Gibbs measure in (1.2) maximizes the entropy Ewew,. [=Prn(w) log Py (w)] sub-
ject to the constraint of constant energy Zw W, P, (w)Hp(w), as required by
equilibrium statistical physics.

2 The reader must carefully distinguish between the upper index w, labeling the
random environment, and the argument w, labeling the path, even though these
symbols look very much alike. In Part B they will appear side by side in many
formulas.



