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GRI DISCLAIMER

LEGAL NOTICE: This report was prepared by Eltron Research, Inc. as an account
of work sponsored by the Gas Research Institute (GRI). Neither GRI, members of
GRI, nor any person acting on behalf of either:

a.

Makes any warranty or representation, express or implied, with respect
to the accuracy, completeness, or usefulness of the information contained
in this report, or that the use of any apparatus, method, or process
disclosed in this report may not infringe privately owned rights; or

Assumes any liability with respect to the use of, or for damages

resulting from the use of, any information, apparatus, method or process
disclosed in this report.
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1) 600°C solid-state fuel cells (SOFC) possessing new highly
conductive solid electrolytes.

2) Effective, continuous oxidative coupling of methane at the
lowest possible temperatures.

We are pursuing two approaches towards identifying intermediate
temperature SOFC’s. One approach involves identifying crystallo-
graphic parameters and ionic constituents for achieving rapid
ionic mobility. This may lead to selecting solid electrolytes
possessing high ionic conductivities which would provide small
internal resistance losses in fuel cells. Initial focus has been
on the influence of these parameters on activation energy, E,, for
ionic conduction. In future work we will additionally address the
role of carrier density towards improving ionic conductivity in
these materials. The second approach is involving the evaluation
of metalloorganic chemical vapor deposition for depositing thin-
film solid electrolytes to give SOFC’s possessing intrinsically
low internal resistance losses.

To provide electrocatalytic sites at the fuel cell anode compati-
ble with either partial or complete methane oxidation, we are
varying both electronic and ionic conductivity within solid-state
lattice and lattice surface oxygen binding energies.

We are also exploring the use of mixed ionic and electronic
conducting membranes for promoting methane oxidative dimerization
at intermediate temperatures.

We have:

e Shown how the activation energy, E,, for anion conduction in
perovskite electrolytes varies with thermodynamic and 1lattice
geometric parameters. Perovskite lattices which favor low E, for
anion migration include: i) that the overall lattice possess a
moderate metal-oxygen binding energy, and heats of formations ii)
perovskite solid electrolytes possess large free volumes, iii)
preferred (r.uw/Yo )° ratios for A-A-B saddle points =0.5,and iv)
that the lattice minimally polarizes the mobile anion by having
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itself high polarizability.

. Identified perovskite-related structures possessing intrinsic
anion vacancies that have high ionic conductivity.

° Incorporated new perovskite solid electrolytes into fuel cells
which operate at intermediate temperatures.

. Tape-cast perovskite solid electrolytes in dense self-
supporting films of 50 microns thickness.

. Designed and fabricated the hardware for a semi-internally
manifolded intermediate temperature fuel cell stack.

° Identified criteria for selecting mixed ionic-electronic
conducting perovskite membranes for methane oxidative dimeri-

zation.

° Found that more tightly bound O~ species present at the
interfacial region give a higher probability towards promoting
partial methane oxidation.

. Identified mixed-ionic-and electronic-conducting oxide
candidates for SOFC electrodes and oxygen separation membranes.

° Prepared thin films of yttria stabilized zirconia (YSZ) using
metalloorganic chemical vapor deposition.

Project Implications

This research sought to develop correlations underlying highly conductive
solid electrolytes and employ more conductive electrolytes in laboratory fuel
cells which operate at temperatures several hundreds of degrees below the 1000°C
temperatures used in current solid oxide fuel cells (SOFCs). The goal of the
research was to improve the reliability and cost of planar SOFCs through the use
of electrolytes that could function under relatively mild temperatures. Although
the research did not identify a candidate reduced-temperature SOFC device, its
extensive findings provide a basis for further development. GRI does not plan
to continue this contract.
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