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Preface

This text is intended for use in a first course in ordinary differ-
ential equations following elementary calculus and is designed to
meet a variety of needs. Where a minimal coverage of techniques is
the objective in a one-semester, three-hour course, Chapters 1
through 6 with all the starred material omitted should serve. At
the other extreme, a serious and longer course, with some attention
to fine points, may be based on the full contents of the book,
including starred material. It is hoped that the book will be well
suited for use in institutions where a course in differential equations
is generally required, as is the case in some engineering schools.

Since there is an increasing tendency to pay attention to indi-
vidual differences among students (e.g., through ability grouping
by course sections or within course sections), some instructors may
wish to have enrichment materials available for their more capable
students. The starred subsections and accompanying starred exer-
cises should in many cases help to fill this need.

Where possible we have attempted, even in the main portions
of the text, to inject some of the modern spirit into the presentation,
while at the same time respecting fully valid classical objectives
centering about techniques and skills. For example, in the solution
of xdy + ydx = 0, we deviate from the traditional practice of
dividing by zy and subsequently pretending that the division had
not occurred. Again, we have tried to stress what is obvious but
usually avoided, that a function is not specified until its domain is
given; accordingly, the search for a function (e.g., a solution of a
differential equation) entails also the search for its domain.

Despite an apparent decrease in interest in operators, we have
elected to include them, even with some emphasis, for four reasons:
1) they simplify the development of the theory of linear equations
both conceptually and notationally; 2) they aid in the presentation
of our point of view toward applications in Chapter 6; 3) many

vii



viii Preface

students are stimulated, and thus better motivated, by contact
with the theory of operators, probably because of the high level of
precision and clarity which characterizes it; and 4) the theory of
operators can be especially profitable for students who have already
been exposed, perhaps even in high school, to some abstract mathe-
matics.

The Laplace transform has been included in such a way that it
can be omitted entirely, touched upon briefly, or emphasized,
according to the desires of the instructor. In Chapter 7 we have
included a section on Fourier series primarily because the elements
of this topic are needed early by engineering students but are not
normally accessible in elementary texts. In this chapter and else-
where we have freely used the summation notation. Our experi-
ence has shown that students at this level can become thoroughly
familiar with it and skilled in its use; we believe that it can help
students to develop good habits of expression.

The primary reason, in our opinion, for including applications
in elementary mathematics books is motivation. Yet it is senseless
to try to apply mathematics before having some mathematics to
apply. Consequently, we feel that to intersperse applications
throughout the book would have produced greater harm than
benefit. We have therefore segregated them and placed them in
two chapters, 3 and 6.

In selecting exercises, we have been guided by educational
objectives and not by an urge to outdo other authors in respect to
quantity. We have endeavored to meet the demands posed by
individual instructors’ tastes, while avoiding long lists of repetitious
“busy-work’’ problems. Supplementary groups at the ends of
Chapters 2 and 5 are included in order to give students an oppor-
tunity to develop judgment in the selection of an appropriate or
“best’” method from among many that are available. Similar groups
in Chapters 3 and 6 may meet the desires of instructors who wish to
stress applications.

Answers to odd-numbered exercises appear in Appendix 4;
similar answers to even-numbered exercises are available separately
on special order by faculty members. Where approximate numerical
answers are given, they have been computed with the help of seven-
place tables to ensure accuracy; use of four- or five-place tables
may thus result in some discrepancies. A reasonably complete
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table of Laplace transforms and some miscellaneous reference mate-
rials which may be helpful to the student appear in Appendices
1, 2, 3.

We are grateful for the superb cooperation and understanding
of International Textbook Company during all stages of work on
the book—from the inception of the writing project, through prepa-
ration of the manuscript, and finally publication. We owe much
to many colleagues who aided us directly or indirectly ; outstanding
among these is R. A. Struble, who was associated with our project
for a time, and who contributed substantially to the development
of our approach to linear equations and especially their applications.
Many thanks are due also to Mrs. Herbert J. Curtis, who aided in
reading proof; to Mrs. L. R. Wilcox, who typed the manuscript,
read proof, and offered much valuable advice; and to our respective
institutions, which furnished the proving ground for many of our
ideas.

L. R. WiLcox
HEerseRT J. CURTIS

Chicago, Illinois
June, 1961
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Chapter

1

Introduction

1-1. PRELIMINARIES

Much of mathematies is concerned with equations of one type or
another. The reader is already familiar with numerical equations,
such as are studied extensively in algebra. There we have a given
function f of a numerical variable and are interested in those
particular numbers « for which f(z) = 0. The statement f(z) = 0
is called an equation, and the numbers x, which when substituted
into it make the statement true, are the solutions. Generally, an
equation specifies, though indirectly, the collection of all its solu-
tions; mathematical questions centering around the equation are
directed toward learning everything possible about this collection
of all solutions.

Example 1-1. If a, b are given real numbers, axz + b = 0 is an
equation specifying a certain collection of (real) solutions. If
a # 0, it is shown in algebra that this collection consists of exactly
one number, and, in fact, that this number is —b/a.

Iixample 1-1 suggests that, while the task of ‘“solving an
equation,” that is, finding in some specific form all solutions, is the
most important one connected with an equation, it might be useful
first to settle two preliminary questions:

I Is there any solution at all?
IT If so, exactly how many solutions are there?
When the answer to Question I is No, one proceeds no further, and
all other questions disappear. Knowledge of this fact may save
considerable effort. When the answer to Question I is Yes, an
answer to Question IT gives some direction to the search for solutions.

Example 1-2. Consider v/2 + 1 = 0, where z is complex. Here
no solution exists, because +/z is non-negative if # is real and
non-negative, and is non-real otherwise; in no case can v/z be equal

to —1.
1



2 Introduction Sec. 1-1

Example 1-3. Consider z* — x = 0, where z is complex. The
general theorems on polynomial equations tell us that a cubic
equation has just three solutions. By inspection, or by factorization,
we see that 0, 1, —1 are solutions. All solutions have thus been found.

Equations of the type to be treated in this book have, to some
extent, been encountered in the calculus. If f is a given function of
the real variable ¢ defined, say, for a < t < b, @ and b being given,
one may consider the equation

(1-1) 240 = 10.

Thus (1-1) is a statement about a function y of { which may or may
not be true; the solutions of (1-1) are those functions y of ¢ which
make (1-1) true when substituted into it. It is understood that the
equality in (1-1) means that y possesses a derivative for all values
of ¢ such that @ < ¢t £ b, and that this derivative function is the
same as the function f(¢).

The problem represented by (1-1) is a central one in calculus;
any solution of (1-1) is called an antiderivative (sometimes indefinite
integral) of f(¢) and is often denoted by [f(f) dt. Questions I and
II are of significance in connection with such equations as (1-1),
as we shall see.

. d . .
Example 1-4. Consider 7 y(t) = 3t%, where ¢ is unrestricted, but

real. A little knowledge of differentiation yields that the function
t* is a solution. Thus ¢® + ¢ is also a solution, where ¢ is an arbitrary
constant (function). It is shown in the calculus that no further
solutions exist (see page 5). Note that as soon as the solution ¢3 is
produced, Question I is answered in the affirmative; existence of
infinitely many solutions gives an answer to Question II. Finally,
all solutions are given by y(t) = t* + c.

Equations of the form (1-1) always have infinitely many solu-
tions if one exists. Hence it is important to establish conditions for
the existence of a solution. Under such conditions, Question II is of
little value in its original form; a modified form will be given later.

The term differential equations will be used throughout this text
to refer to equations of the form (1-1) and to certain generalizations
of these equations; no attempt will be made to specify in a precise
manner exactly what class or classes of equations will be so called.
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Loosely speaking, differential equations “involve’” derivatives (or
differentials), and the ‘“unknowns” are functions. As certain
algebraic equations are classified according to ‘“‘degree,” so certain
differential equations are classified according to ‘“order.” Thus
(1-1) has first order because no derivatives (or differentials) of y(f)
of order greater than the first appear. More generally, the term
nth order is applied to a differential equation in which derivatives
(or differentials) of an “unknown” function of various orders may
appear, those of all orders greater than n being absent and that
of order n being certainly present. Thus,!

dy
Ef— - ty,
t+ydy =@ —yd,
. (d%
sin <Et_ + y) =In(Vt+y)

are examples of differential equations of order 1, 1, 5, respectively.
(Note: We have written and shall frequently write y instead of
y(t) for simplicity.)

*Domains of Functions. Mean Value Theorem.? It has been indicated
that throughout this book we are concerned with functions; some-
times they are given and sometimes they are to be determined. It
is important to recognize precisely what information is required in
the specification of a function.

Basically, a function is a correspondence f associating with each
member of a set A of objects, called the domain, a unique object of
a set B called the range set.®* In our work, the domain is almost
always a set of real numbers, and the range set also consists of
numbers (sometimes real, sometimes complex). In order to specify
fully a function f, it is necessary to tell what the sets A and B are
and then what the rule of correspondence is.

In practice, we often tend to overlook the necessity of specifying
the domain and range set, because most of the familiar functions
have a “natural” or “maximal”’ domain. Thus, if we define a func-

'The notation In 2 denotes log, . The notation log z is reserved for logo .

2For a less comprehensive treatment of the subject, the sections marked by *
can be omitted without interrupting the continuity of the presentation.

3The term range is used to designate the set of those objects in B which actually
correspond to objects in the domain. It may consist of all of B or only a part of B.
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tion f by the requirement f({) = ¢% it is natural to assume that the
domain as well as the range set consists of all real numbers ¢. Again,
if f(£) = 1/t, then the “natural” domain is the set of all non-zero
real numbers; if f(t) = +/%, then the domain consists of all non-
negative real numbers.

This practice is generally acceptable, but it can on occasion lead
to difficulties. The reader is cautioned that a critical study of
differential equations is not possible without the devotion of careful
attention to the domains of functions which arise.

In performing the task of presenting the solution functions of a
differential equation, it is often more or less satisfactory to present
each function by a formula or rule of correspondence. The tacit
assumption might be that the domain is the ‘“ natural” domain, while
the range set is the set of all real (or complex) numbers. Yet it must
be remembered that when a function is unknown, its domain is
unknown too, and part of the task of determining such a function is
to find its domain. Thus, in Example 1-4, the equation y'(t) = 3t*
carried with it a statement that the domain of 3¢2 was to be taken as
the set of all real numbers. The solution y(f) = t* + ¢ has the same
set as its natural domain.

A rather curious anomaly occurs, however, in case of the differ-
ential equation y’ = 1/t, where the domain of 1/¢ is the set of all
real ¢ = 0. Here integral calculus suggests that y = In|¢| + ¢
gives all solutions. However, if the domain of In | ¢ | + ¢ is taken
again as all ¢ £ 0, it is clear that further solutions exist. For
example, if we define 2(¢) for ¢ # 0 so that

In|t|+e  fort >0,
z2(t) =
Inlt| + ¢y fort < 0,
where ¢; 5 ¢, then, for every ¢t = 0, 2/(f) = 1/¢, so that 2(¢) is a
solution of the equation. Two principles are therefore suggested:

1. Admissible solutions of differential equations shall be functions
whose domains are intervals, that is, sets of the form

all real numbers ¢ such that « < ¢ £ b,

or

all real numbers ¢ such that a < ¢,
or

all real numbers ¢ such that ¢ < b,
or

all real numbers ¢.
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2. Solutions of a differential equation should have, but need not
have, maximal domains subject to the restrictions in principle 1.
It is not required that their domains agree with those of functions
appearing in the equation.

From these principles, it appears that In | ¢| + ¢ (¢ = 0) would
not be admissible as a solution of ¥’ = 1/t (¢ # 0) because principle
1 is violated. However, by principle 2, In ¢t + ¢ (¢ > 0) [or
In (=t) + ¢ (¢ < 0)] would be admissible, even though its domain
is less than that of 1/¢. Despite the ambiguity, we shall follow
custom and write In |¢| 4+ ¢ to designate succinctly the two
classes of solutions.

In Example 1-4, it was suggested that all solutions of the
differential equation y’ = f(¢) are given by y = Y({) + ¢, where
Y (?) is a particular solution satisfying the equation. Before proving
this result, we state the following theorem.

Mean Value Theorem. If ¢(¢) is continuous for ¢{; < t < ¢ and
if ¢’(t) exists for ¢t; < ¢t < t,, then there exists {o with {; < fo < {2
such that
@(ts) — ¢(t1) = (t2 — t1)d'(to).

A proof of this theorem is to be found in most calculus books.

Let Y () be a particular solution of y’ = f(¢) and let y(f) be any
solution; it is assumed that all three functions are defined for all ¢
such that @« = t = b. Define ¢(t) = y(t) — Y(t), so that

() =y'(t) = Y'(t) =f(t) —f(£) =0

fora =t =b. Let t be given, and apply the mean value theorem
with ¢, = a, {3 = {; there exists ¢, between a and ¢ such that

(1) — ¢(a) = (¢ — a)¢/(to) = 0.
If ¢ is defined as ¢(a), we have
y() = YO = ¢@) = ¢(a) =,

so that y({) = Y(t) 4+ cfor all ¢ such thata < ¢ < b.

EXERCISES

In each of exercises 1 to 10, find answers to Questions I and II
for the given numerical equation. Where solutions exist, find all of
them. Use the real number system.
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8 — 222 — 8x = 0.

S+ —-2=0.

Lo
= 8, 8

-1=0.
; . »

Lol 2>
‘"z -1 22—-1"

z ="V52 — 6.
r = vz + 2.
2V —x + 2 = 1.

1

.secx—é-
sin x 1 —cosz
"1 +cosz  sinx

1 — cosz

10, ————— = sinx.
0 5 sin x

For the equation in each of exercises 11 to 14, answer Questions
I and II.

11. tanz = .

12. sinz = z.

13. ¢ = b (b a given real number).
14. ¢ + e * = 1.

8
to

®» N oo @

IEach of exercises 15 to 21 contains an equation for an unknown
real function y(¢) of the real variable t. For each equation find one
solution; then write all solutions.

dy 1
15. R
16. ¥’ = cos’t.
17. 0 = -1
VTR
18. y' = te'.
1
! = e —————
19. y' = Ny
20. y' =tInt.
t2
21. y' k.
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In each of exercises 22 to 25, determine the order of the differ-
ential equation.
dy dy
deé  dt
23. (y2 + 1) dy — (@ +yHdt =

4, 1 d4
24, LY 4 3, W L (1 +—f-~>

dt*
de A%y dy

az T e T w

In each of exercises 26 to 29, y is an unknown function and the
equation is assumed to be true for all real numbers » and ». Show
that in each case infinitely many solutions exist.*

*26. y(u + v) = y(u) + y(v).

*27. y(u + v) = y(u) - y().

*28. y(u + 2m) = y(u).

*29. y2(u + g) + ¥’ (w) =
*30. In exercise 19, determine the ‘“natural’”’ domain of each
solution.

*31. In each of exercises 18, 20, and 21, specify appropriate
domains for the function in the right side and the solutions found.

22. = 0.

25. y + sin?

1-2. FAMILIES OF SOLUTIONS

Let us examine some possibilities relative to the collection of
all solutions of a differential equation. It will be recalled that the
equation®

(1-2) y'(t) = 3t*

of Example 1-4 has an infinitude of solutions
(1-3) yi) =t + c.
Now consider the second-order equation
(1-4) y't) =

4Exercises marked by * are more difficult than the rest; they are intended
primarily for students who are studying the entire text, including the sections
similarly identified.
dy dry

5As usual in the calculus, 3/, y”, - - - are alternative notations for —= FTMP T

y e



