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Preface

This is a textbook for an introductory course on linear partial differential equa-
tions (PDEs) and initial/boundary value problems (I/BVPs). It also provides a
mathematically rigorous introduction to Fourier analysis (Chapters 7, 8, 9, 10, and
19), which is the main tool used to solve linear PDEs in Cartesian coordinates.
Finally, it introduces basic functional analysis (Chapter 6) and complex analysis
(Chapter 18). The first is necessary to characterize rigorously the convergence
of Fourier series, and also to discuss eigenfunctions for linear differential opera-
tors. The second provides powerful techniques to transform domains and compute
integrals, and also offers additional insight into Fourier series.

This book is not intended to be comprehensive or encyclopaedic. It is designed
for a one-semester course (i.e. 3640 hours of lectures), and it is therefore strictly
limited in scope. First, it deals mainly with /inear PDEs with constant coefficients.
Thus, there is no discussion of characteristics, conservation laws, shocks, varia-
tional techniques, or perturbation methods, which would be germane to other types
of PDEs. Second, the book focuses mainly on concrete solution methods to specific
PDEs (e.g. the Laplace, Poisson, heat, wave, and Schrodinger equations) on specific
domains (e.g. line segments, boxes, disks, annuli, spheres), and spends rather little
time on qualitative results about entire classes of PDEs (e.g. elliptic, parabolic,
hyperbolic) on general domains. Only after a thorough exposition of these special
cases does the book sketch the general theory; experience shows that this is far
more pedagogically effective than presenting the general theory first. Finally, the
book does not deal at all with numerical solutions or Galerkin methods.

One slightly unusual feature of this book is that, from the very beginning, it
emphasizes the central role of eigenfunctions (of the Laplacian) in the solution
methods for linear PDEs. Fourier series and Fourier—Bessel expansions are intro-
duced as the orthogonal eigenfunction expansions which are most suitable in certain
domains or coordinate systems. Separation of variables appears relatively late in
the exposition (Chapter 16) as a convenient device to obtain such eigenfunctions.
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Xvi Preface

The only techniques in the book which are not either implicitly or explicitly based
on eigenfunction expansions are impulse-response functions and Green’s functions
(Chapter 17) and complex-analytic methods (Chapter 18).

Prerequisites and intended audience

This book is written for third-year undergraduate students in mathematics,
physics, engineering, and other mathematical sciences. The only prererequisites are
(1) multivariate calculus (i.e. partial derivatives, multivariate integration, changes
of coordinate system) and (2) linear algebra (i.e. linear operators and their
eigenvectors).

It might also be helpful for students to be familiar with the following: (1) the
basic theory of ordinary differential equations (specifically, Laplace transforms,
Frobenius method); (2) some elementary vector calculus (specifically, divergence
and gradient operators); and (3) elementary physics (to understand the physical
motivation behind many of the problems). However, none of these three things are
really required.

In addition to this background knowledge, the book requires some ability at
abstract mathematical reasoning. Unlike some ‘applied math’ texts, we do not
suppress or handwave the mathematical theory behind the solution methods. At
suitable moments, the exposition introduces concepts such as ‘orthogonal basis’,
‘uniform convergence’ vs. ‘L,-convergence’, ‘eigenfunction expansion’, and ‘self-
adjoint operator’; thus, students must be intellectually capable of understanding
abstract mathematical concepts of this nature. Likewise, the exposition is mainly
organized in a ‘definition — theorem — proof — example’ format, rather than
a ‘problem — solution’ format. Students must be able to understand abstract
descriptions of general solution techniques, rather than simply learn by imitating
worked solutions to special cases.

Conventions in the text

x in the title of a chapter or section indicates ‘optional’ material which is not part of
the core syllabus.

opionaty 1N the margin indicates that a particular theorem or statement is ‘optional’ in the
sense that it is not required later in the text.

(®) in the margin indicates the location of an exercise. (Shorter exercises are sometimes
embedded within the exposition.)

¢ indicates the ends of more lengthy exercises.

O ends the proof of a theorem.

< indicates the end of an example.

¢ ends the proof of a ‘claim” within the proof of a theorem.

A ends the proof of a ‘subclaim’ within the proof of a claim.
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What’s good about this book?

This text has many advantages over most other introductions to partial differential
equations.

Illustrations

PDEs are physically motivated and geometrical objects; they describe curves,
surfaces, and scalar fields with special geometric properties, and the way these
entities evolve over time under endogenous dynamics. To understand PDEs and
their solutions, it is necessary to visualize them. Algebraic formulae are just a
language used to communicate such visual ideas in lieu of pictures, and they
generally make a poor substitute. This book has over 300 high-quality illustrations,
many of which are rendered in three dimensions. In the online version of the book,
most of these illustrations appear in full colour. Also, the website contains many
animations which do not appear in the printed book.

Most importantly, on the book website, all illustrations are freely available
under a Creative Commons Attribution Noncommercial Share-Alike License.'
This means that you are free to download, modify, and utilize the illus-
trations to prepare your own course materials (e.g. printed lecture notes or
beamer presentations), as long as you attribute the original author. Please visit
<http://xaravve.trentu.ca/pde>.

Physical motivation
Connecting the math to physical reality is critical: it keeps students motivated, and
helps them interpret the mathematical formalism in terms of their physical intuitions
about diffusion, vibration, electrostatics, etc. Chapter 1 of this book discusses the

I See http://creativecommons.org/licenses/by-nc-sa/3.0.
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What's good about this book? Xix

physics behind the heat, Laplace, and Poisson equations, and Chapter 2 discusses
the wave equation. An unusual addition to this text is Chapter 3, which discusses
quantum mechanics and the Schrodinger Equation (one of the major applications
of PDE theory in modern physics).

Detailed syllabus

Difficult choices must be made when turning a 600+ page textbook into a feasible
12-week lesson plan. It is easy to run out of time or inadvertently miss something
important. To facilitate this task, this book provides a lecture-by-lecture breakdown
of how the author covers the material (see p. xxv). Of course, each instructor
can diverge from this syllabus to suit the interests/background of their students,
a longer/shorter teaching semester, or their personal taste. But the prefabricated
syllabus provides a base to work from, and will save most instructors a lot of time
and aggravation.

Explicit prerequisites for each chapter and section

To save time, an instructor might want to skip a certain chapter or section, but
worries that it may end up being important later. We resolve this problem in two
ways. First, p. xiv provides a ‘chapter dependency lattice’, which summarizes the
large-scale structure of logical dependencies between the chapters of the book.
Second, every section of every chapter begins with an explicit list of ‘required’
and ‘recommended’ prerequisite sections; this provides more detailed information
about the small-scale structure of logical dependencies between sections. By tracing
backward through this ‘lattice of dependencies’, you can figure out exactly what
background material you must cover to reach a particular goal. This makes the
book especially suitable for self-study.

Flat dependency lattice

There are many ‘paths’ through the 20-chapter dependency lattice on p. xiv
every one of which is only seven chapters or less in length. Thus, an instructor
(or an autodidact) can design many possible syllabi, depending on their inter-
ests, and can quickly move to advanced material. The ‘Suggested 12-week syl-
labus® on p. xxv describes a gentle progression through the material, covering
most of the ‘core’ topics in a 12-week semester, emphasizing concrete examples
and gradually escalating the abstraction level. The Chapter Dependency Lattice
suggests some other possibilities for ‘accelerated’ syllabi focusing on different
themes.
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* Solving PDEs with impulse response functions. Chapters 1,2, 5, and 17 only.

* Solving PDEs with Fourier transforms. Chapters 1,2, 5, 19, and 20 only. (Pedagogically
speaking, Chapters 8 and 9 will help the student understand Chapter 19, and Chapters
11-13 will help the student understand Chapter 20. Also, it is interesting to see how
the ‘impulse response’ methods of Chapter 17 yield the same solutions as the ‘Fourier
methods’ of Chapter 20, using a totally different approach. However, strictly speaking,
none of Chapters 8-13 or 17 is logically necessary.)

e Solving PDEs with separation of variables. Chapters 1, 2, and, 16 only. (However,
without at least Chapters 12, and 14, the ideas of Chapter 16 will seem somewhat
artificial and pointless.)

e Solving I/BVPs using eigenfunction expansions. Chapters 1,2,4,5, 6, and 15. (It would
be pedagogically better to also cover Chapters 9 and 12, and probably Chapter 14. But,
strictly speaking, none of these is logically necessary.)

* Tools for quantum mechanics. Section 1B, then Chapters 3, 4, 6, 9, 13, 19, and 20
(skipping material on Laplace, Poisson, and wave equations in Chapters 13 and 20, and
adapting the solutions to the heat equation into solutions to the Schrodinger Equation).

* Fourier theory. Section 4A, then Chapters 6, 7, 8, 9, 10, and 19. Finally, Sections 18A,
18C, 18E, and 18F provide a ‘complex’ perspective. (Section 18H also contains some
useful computational tools.)

* Crash course in complex analysis. Chapter 18 is logically independent of the rest of the
book, and rigorously develops the main ideas in complex analysis from first principles.
(However, the emphasis is on applications to PDEs and Fourier theory, so some of the
material may seem esoteric or unmotivated if read in isolation from other chapters.)

Highly structured exposition, with clear motivation up front

The exposition is broken into small, semi-independent logical units, each of which
is clearly labelled, and which has a clear purpose or meaning which is made
immediately apparent. This simplifies the instructor’s task; it is not necessary to
spend time restructuring and summarizing the text material because it is already
structured in a manner which self-summarizes. Instead, instructors can focus more
on explanation, motivation, and clarification.

Many ‘practice problems’ (with complete solutions and
source code available online)

Frequent evaluation is critical to reinforce material taught in class. This book pro-
vides an extensive supply of (generally simple) computational ‘practice problems’
at the end of each chapter. Completely worked solutions to virtually all of these
problems are available on the book website. Also on the book website, the IKTEX
source code for all problems and solutions is freely available under a Creative
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Commons Attribution Noncommercial Share-Alike License.? Thus, an instructor
can download and edit this source code, and easily create quizzes, assignments,
and matching solutions for students.

Challenging exercises without solutions

Complex theoretical concepts cannot really be tested in quizzes, and do not lend
themselves to canned ‘practice problems’. For a more theoretical course with more
mathematically sophisticated students, the instructor will want to assign some
proof-related exercises for homework. This book has more than 420 such exercises
scattered throughout the exposition; these are flagged by an ‘(€)” symbol in the
margin, as shown here. Many of these exercises ask the student to prove a major
result from the text (or a component thereof). This is the best kind of exercise,
because it reinforces the material taught in class, and gives students a sense of
ownership of the mathematics. Also, students find it more fun and exciting to prove
important theorems, rather than solving esoteric make-work problems.

Appropriate rigour

The solutions of PDEs unfortunately involve many technicalities (e.g. different
forms of convergence; derivatives of infinite function series, etc.). It is tempting to
handwave and gloss over these technicalities, to avoid confusing students. But this
kind of pedagogical dishonesty actually makes students more confused; they know
something is fishy, but they can’t tell quite what. Smarter students know they are
being misled, and may lose respect for the book, the instructor, or even the whole
subject.

In contrast, this book provides a rigorous mathematical foundation for all its
solution methods. For example, Chapter 6 contains a careful explanation of L>-
spaces, the various forms of convergence for Fourier series, and the differences
between them — including the ‘pathologies’ which can arise when one is careless
about these issues. I adopt a ‘triage’ approach to proofs: the simplest proofs are
left as exercises for the motivated student (often with a step-by-step breakdown of
the best strategy). The most complex proofs I have omitted, but I provide multiple
references to other recent texts. In between are those proofs which are challenging
but still accessible; I provide detailed expositions of these proofs. Often, when the
text contains several variants of the same theorem, I prove one variant in detail,
and leave the other proofs as exercises.

2 See http://creativecommons.org/licenses/by-nc-sa/3.0.
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Appropriate abstraction

It is tempting to avoid abstractions (e.g. linear differential operators, eigenfunc-
tions), and simply present ad hoc solutions to special cases. This cheats the stu-
dent. The right abstractions provide simple. yet powerful, tools that help students
understand a myriad of seemingly disparate special cases within a single unifying
framework. This book provides students with the opportunity to learn an abstract
perspective once they are ready for it. Some abstractions are introduced in the main
exposition, others are in optional sections, or in the philosophical preambles which
begin each major part of the book.

Gradual abstraction

Learning proceeds from the concrete to the abstract. Thus, the book begins each
topic with a specific example or a low-dimensional formulation, and only later
proceeds to a more general/abstract idea. This introduces a lot of ‘redundancy’
into the text, in the sense that later formulations subsume the earlier ones. So the
exposition is not as ‘efficient’ as it could be. This is a good thing. Efficiency makes
for good reference books, but lousy texts.

For example, when introducing the heat equation, Laplace equation, and wave
equation in Chapters 1 and 2, I first derive and explain the one-dimensional version
of each equation, then the two-dimensional version, and, finally, the general, D-
dimensional version. Likewise, when developing the solution methods for BVPs
in Cartesian coordinates (Chapters 11-13), I confine the exposition to the interval
[0, ], the square [0, 7r]2, and the cube [0, I?, and assume all the coefficients in the
differential equations are unity. Then the exercises ask the student to state and prove
the appropriate generalization of each solution method for an interval/rectangle/box
of arbitrary dimensions, and for equations with arbitrary coefficients. The general
method for solving I/BVPs using eigenfunction expansions only appears in Chapter
15, after many special cases of this method have been thoroughly exposited in
Cartesian and polar coordinates (Chapters 11-14).

Likewise, the development of Fourier theory proceeds in gradually escalat-
ing levels of abstraction. First we encounter Fourier (co)sine series on the inter-
val [0, ] (§7A); then on the interval [0, L] for arbitrary L > 0 (§7B). Then
Chapter 8 introduces ‘real’ Fourier series (i.e. with both sine and cosine terms), and
then complex Fourier series (§8D). Then, Chapter 9 introduces two-dimensional
(co)sine series and, finally, D-dimensional (co)sine series.

Expositional clarity

Computer scientists have long known that it is easy to write software that works, but
itis much more difficult (and important) to write working software that other people
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can understand. Similarly, it is relatively easy to write formally correct mathematics;
the real challenge is to make the mathematics easy to read. To achieve this, I use
several techniques. I divide proofs into semi-independent modules (‘claims’), each
of which performs a simple, clearly defined task. I integrate these modules together
in an explicit hierarchical structure (with ‘subclaims’ inside of ‘claims’), so that
their functional interdependence is clear from visual inspection. I also explain
formal steps with parenthetical heuristic remarks. For example, in a long string of
(in)equalities, I often attach footnotes to each step, as follows:

“A=B < C < D.Here, (x) is because [. .. |; (1) follows from [. .. ], and (}) is because [. .. ].’
Lad (&2 1)

Finally, I use letters from the same ‘lexicographical family’ to denote objects
which ‘belong’ together. For example: If S and 7 are sets, then elements of S
should be s, 5o, 53, ..., while elements of 7 are |, t, t3,.... If v is a vector,
then its entries should be vy, ..., vy. If A is a matrix, then its entries should
be aji,...,anm. 1 reserve upper-case letters (e.g. J, K, L, M, N, ...) for the
bounds of intervals or indexing sets, and then use the corresponding lower-case
letters (e.g. j, k, [, m, n,...)as indexes. For example, Vn € {1,2,..., N}, A, .=

J
Z_,'=| Zf:l .

Clear and explicit statements of solution techniques

Many PDE texts contain very few theorems; instead they try to develop the theory
through a long sequence of worked examples, hoping that students will ‘learn
by imitation’, and somehow absorb the important ideas ‘by osmosis’. However,
less gifted students often just imitate these worked examples in a slavish and
uncomprehending way. Meanwhile, the more gifted students do not want to learn
‘by osmosis’; they want clear and precise statements of the main ideas.

The problem is that most solution methods in PDEs, if stated as theorems
in full generality, are incomprehensible to many students (especially the non-
math majors). My solution is this: I provide explicit and precise statements of
the solution method for almost every possible combination of (1) several major
PDEs, (2) several kinds of boundary conditions, and (3) several different domains.
[ state these solutions as theorems, not as ‘worked examples’. I follow each of these
theorems with several completely worked examples. Some theorems I prove, but
most of the proofs are left as exercises (often with step-by-step hints).

Of course, this approach is highly redundant, because I end up stating more than
20 theorems, which really are all special cases of three or four general results (for
example, the general method for solving the heat equation on a compact domain
with Dirichlet boundary conditions, using an eigenfunction expansion). However,
this sort of redundancy is good in an elementary exposition. Highly ‘efficient’
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expositions are pleasing to our aesthetic sensibilities, but they are dreadful for
pedagogical purposes.

However, one must not leave the students with the impression that the theory
of PDEs is a disjointed collection of special cases. To link together all the *homo-
geneous Dirichlet heat equation’ theorems, for example, I explicitly point out that
they all utilize the same underlying strategy. Also, when a proof of one variant is
left as an exercise, | encourage students to imitate the (provided) proofs of previous
variants. When the students understand the underlying similarity between the var-
ious special cases, then it is appropriate to state the general solution. The students
will almost feel they have figured it out for themselves, which is the best way to
learn something.



Suggested 12-week syllabus

Week 1: Heat and diffusion-related PDE's
Lecture 1: Appendix A—Appendix E  Review of multivariate calculus; introduction
to complex numbers.
Lecture 2: §1A-§1B  Fourier’s law; the heat equation.
Lecture 3: §1C-§1D  Laplace equation; Poisson equation.

Week 2: Wave-related PDEs; quantum mechanics
Lecture 1: §1E; §2A  Properties of harmonic functions; spherical means.
Lecture 2: §2B-§2C  Wave equation; telegraph equation.
Lecture 3: Chapter 3  The Schrodinger equation in quantum mechanics.

Week 3: General theory
Lecture 1: §4A-§4C  Linear PDEs: homogeneous vs. nonhomogeneous.
Lecture 2: §5A; §5B  Evolution equations and initial value problems.
Lecture 3: §5C  Boundary conditions and boundary value problems.

Week 4: Background to Fourier theory
Lecture 1: §5D  Uniqueness of solutions to BVPs; §6A inner products.
Lecture 2: §6B—§6D  L>-space; orthogonality.
Lecture 3: §6E(i)—(iii)  L>-convergence; pointwise convergence; uniform conver-
gence.

Week 5: One-dimensional Fourier series
Lecture 1: §6E(iv)  Infinite series; §O6F orthogonal bases; §7A Fourier (co/sine)
series: definition and examples.
Lecture 2: §7C(i)~(v)  Computing Fourier series of polynomials, piecewise linear
and step functions.

Lecture 3: §11A-§11C  Solution to heat equation and Poisson equation on a line
segment.

XXV
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Week 6: Fourier solutions for BVPs in one and two dimensions
Lecture 1: §11B=§12A  Wave equation on line segment and Laplace equation on a
square.
Lecture 2: $9A—89B  Multidimensional Fourier series.
Lecture 3: §12B—§12C(i)  Solution to heat equation and Poisson equation on a
square.

Week 7: Fourier solutions for two-dimensional BVPs in Cartesian and polar coordinates

Lecture 1: §12C(i), §12D  Solution to Poisson equation and wave equation on a
square.

Lecture 2: §5C(iv); $8A—§8B  Periodic boundary conditions; real Fourier series.

Lecture 3: §14A;§14B(i)—(iv) Laplacian in polar coordinates; Laplace equation on
(co)disk.

Week 8: BVPs in polar coordinates; Bessel functions
Lecture 1: §14C  Bessel functions.
Lecture 2: §14D-§14F  Heat, Poisson, and wave equations in polar coordinates.
Lecture 3: §14G  Solving Bessel’s equation with the method of Frobenius.

Week 9: Eigenbases; separation of variables
Lecture 1: §15A-§15B  Eigenfunction solutions to BVPs.
Lecture 2: §15B;§16A-§16B  Harmonic bases; separation of variables in Cartesian
coordinates.
Lecture 3: §16C-§16D  Separation of variables in polar and spherical coordinates;
Legendre polynomials.

Week 10: Impulse response methods

Lecture 1: §17A-§17C  Impulse response functions; convolution; approximations of
identity; Gaussian convolution solution for heat equation.

Lecture 2: §17C—§17F Gaussian convolutions continued; Poisson’s solutions to
Dirichlet problem on a half-plane and a disk.

Lecture 3: §14B(v); §17D Poisson solution on disk via polar coordinates;
d’Alembert solution to wave equation.

Week 11: Fourier transforms
Lecture 1: §19A  One-dimensional Fourier transforms.
Lecture 2: §19B  Properties of one-dimensional Fourier transform.
Lecture 3: §20A: §20C  Fourier transform solution to heat equation; Dirchlet prob-
lem on half-plane.

Week 12: Fourier transform solutions to PDEs

Lecture 1: §19D, §20B(i)  Multidimensional Fourier transforms; solution to wave
equation.



