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Preface

Human-Computer Interaction (HCI) lies at the crossroads of many scientific
areas including artificial intelligence, computer vision, face recognition, motion
tracking, etc. In order for HCI systems to interact seamlessly with people, they
need to understand their environment through vision and auditory input. More-
over, HCI systems should learn how to adaptively respond depending on the
situation.

The goal of this workshop was to bring together researchers from the field
of computer vision whose work is related to human-computer interaction. The
selected articles for this workshop address a wide range of theoretical and ap-
plication issues in human-computer interaction ranging from human-robot in-
teraction, gesture recognition, and body tracking, to facial features analysis and
human-computer interaction systems.

This year 74 papers from 18 countries were submitted and 22 were accepted
for presentation at the workshop after being reviewed by at least 3 members of
the Program Committee. We had therefore a very competitive acceptance rate
of less than 30% and as a consequence we had a very-high-quality workshop.

We would like to thank all members of the Program Committee for their help
in ensuring the quality of the papers accepted for publication. We are grateful
to Dr. Jian Wang for giving the keynote address.

In addition, we wish to thank the organizers of the 10th IEEE International
Conference on Computer Vision and our sponsors, University of Amsterdam,
Leiden Institute of Advanced Computer Science, and the University of Illinois
at Urbana-Champaign, for support in setting up our workshop.

August 20, 2005 Nicu Sebe
Michael S. Lew
Thomas S. Huang
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Multimodal Human Computer Interaction: A Survey

Alejandro Jaimes! and Nicu Sebe?

1 FXPAL, Fuji Xerox Co., Ltd., Japan
alex.jaimes@fujixerox.co.jp
2 University of Amsterdam, The Netherlands
nicu@science.uva.nl

Abstract. In this paper we review the major approaches to multimodal human
computer interaction from a computer vision perspective. In particular, we fo-
cus on body, gesture, gaze, and affective interaction (facial expression recogni-
tion, and emotion in audio). We discuss user and task modeling, and multimo-
dal fusion, highlighting challenges, open issues, and emerging applications for
Multimodal Human Computer Interaction (MMHCI) research.

1 Introduction

Multimodal Human computer interaction (MMHCI) lies at the crossroads of several
research areas including computer vision, psychology, artificial intelligence, and
many others. As computers become integrated into everyday objects (ubiquitous and
pervasive computing), effective natural human-computer interaction becomes critical:
in many applications, users need to be able to interact naturally with computers the
way face-to-face human-human interaction takes place. We communicate through
speech and use body language (posture, gaze [48], hand motions) to express emotion,
mood, attitude, and attention [41].

In human-human communication, interpreting the mix of audio-visual signals is
essential in understanding communication. Researchers in many fields recognize this,
and thanks to advances in the development of unimodal techniques (in speech and
audio processing, computer vision, etc.), and in hardware technologies (inexpensive
cameras and sensors), there has been a significant growth in MMHCI research. Unlike
in traditional HCI applications (a single user facing a computer and interacting with it
via a mouse or a keyboard), in new applications (e.g., intelligent homes [43], remote
collaboration, arts, etc.), interactions are not always explicit commands, and often
involve multiple users.

Although much progress has been achieved in MMHCI, most researchers still treat
each modality (e.g., vision, speech) separately, and integrate the results at the applica-
tion stage. One reason for this is that the roles of multiple modalities and their inter-
play remain to be quantified and scientifically understood. Additionally, many open
issues remain in processing each modality individually.

In this paper we highlight the main vision problems that in our view should be
solved for successful MMHCI applications, and give an overview of the research
areas we consider essential for MMHCI. We group vision techniques according to the
human body (Figure 1). Large-scale body movement, gesture (e.g., hands), and gaze
analysis are used for tasks such as emotion recognition in affective interaction, and
for a variety of applications. We discuss affective computer interaction, issues in
multi-modal fusion, modeling, and data collection, and a variety of emerging MMHCI

N. Sebe, M.S. Lew, and T.S. Huang (Eds.): HCI/ICCV 2005, LNCS 3766, pp. 1-15, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 Alejandro Jaimes and Nicu Sebe

applications. Since MMHCI is a very dynamic and broad research area we do not
intend to present a complete survey. The main contribution of this paper, therefore, is
to consolidate some of the main issues and approaches, and to highlight some of the
techniques and applications developed recently within the context of MMHCI.

1.1 Related Surveys

Extensive surveys have been previously published in several areas such as face detec-
tion [88][26], face recognition [91], facial expression analysis [17][54], vocal emotion
[46][95], gesture recognition [38][78]1[57], human motion analysis [27][83][84][22]
[1][44], and eye tracking [12]. A review of vision-based HCI is presented in [62] with
a focus on head tracking, face and facial expression recognition, eye tracking, and
gesture recognition. Adaptive and intelligent HCI is discussed in [14] with a review of
computer vision for human motion analysis, and a discussion of techniques for lower
arm movement detection, face processing, and gaze analysis. Multimodal interfaces
are discussed in [49][50][51][52][69]. Real-time vision for HCI (gestures, object
tracking, hand posture, gaze) is discussed in [33]. Here, we discuss work not included
in previous surveys, expand the discussion to areas not covered previously (e.g., in
[33][14][62][50]), and discuss new applications in emerging areas while highlighting
the main research issues.

2 Overview of Multimodal Interaction

The term multimodal has been used in many contexts and across several disciplines.
For our interests, a multimodal HCI system is simply one that responds to inputs in
more than one modality or communication channel (e.g., speech, gesture, writing, and
others). We use a human-centered approach in our definition: by modality we mean
mode of communication according to human senses or type of computer input de-
vices. In terms of human senses the categories are sight, touch, hearing, smell, and
taste. In terms of computer input devices we have modalities that are equivalent to
human senses: cameras (sight), haptic sensors (touch), microphones (hearing), olfac-
tory (smell), and even taste [36]. In addition, however, there are input devices that do
not map directly to human senses: keyboard, mouse, writing tablet, motion input (e.g.,
the device itself is moved for interaction), and many others.

In our definition, a system that uses any combination of modalities in the catego-
ries above is multimodal. For our purposes, however, interest is exclusively on sys-
tems that include vision (cameras) as a modality!. A system that responds only to
facial expressions and hand gestures, for example, is not multimodal, even if integra-
tion of both inputs (simultaneous or not) is used (using the same argument, a system
with multiple keys is not multimodal, but a system with mouse a keyboard input is).
The issue of where integration of modalities takes place, if at all, is of great impor-
tance and is discussed throughout the paper.

As depicted in Figure 1, we place input modalities in two major groups: based on
human senses (vision, audio, haptic, olfactory and touch), and others (mouse, key-

! Others have studied multimodal interaction using multiple devices such as mouse and key-
board, keyboard and pen, and so on
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board, etc.). The visual modality includes any form of interaction that can be inter-
preted visually, and the audio modality any form that is audible (including multi-
language input). We only discuss vision in detail, but as many new applications show
(see Section 6), other modalities have gained importance for interaction (e.g., hap-
tic [4]).

As depicted in Figure 1, multimodal techniques can be used to construct a variety
of interfaces. Of particular interest for our goals are perceptual and attentive inter-
faces. Perceptual interfaces [80] as defined in [81], are highly interactive, multimodal
interfaces that enable rich, natural, and efficient interaction with computers. Percep-
tual interfaces seek to leverage sensing (input) and rendering (output) technologies in
order to provide interactions not feasible with standard interfaces and common I/O
devices such as the keyboard, the mouse and the monitor [81]. Attentive interfaces, on
the other hand, are context-aware interfaces that rely on a person’s attention as the
primary input [71] — the goal of these interfaces [47] is to use gathered information
to estimate the best time and approach for communicating with the user.

Interfaces Applications
Attentive

Meeting Arts Remote

) Others
Affective Wearable Ambient  Driving  collaboration
‘\T/’ Others
\ Humansenses 1 Computer input devices |
! [ !
i Vision Audio Smell |1 i| Pointing Keyboard i
i | Body 1 1| Mouse, |
v | Gaze 1| pen,etc. !
! Gesture Haptic Taste |! ! Others !
S e

Fig. 1. Overview of multimodal interaction using a human-centered approach

Vision plays a fundamental role in several types of interfaces. As argued in [71],
attention is epitomized by eye contact (even though other measures, such as cursor
movement can also be indicative). Perceptual interfaces aim at natural interaction,
making vision an essential component. The key point is that vision plays a major role
in human-computer interfaces that aim at natural interaction. As we will see in Sec-
tion 6, vision in multimodal interaction is applied in a variety of applications and
interface types.

Although there have been many advances in MMHCI, as our discussions will
show, the majority of research approaches focus on one mode independently and fuse
the results at the highest level possible (in the application). Accordingly, in the next
section we survey Computer Vision techniques for MMHCI and in the following
sections we discuss fusion, interaction, and applications.

3 Core Vision Techniques

We classify vision techniques for MMHCI using a human-centered approach and
divide them according to how humans may interact with the system: (1) large-scale
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body movements, (2) gestures, and (3) gaze. We make a distinction between com-
mand (actions can be used to explicitly execute commands: select menus, etc.) and
non-command interfaces (actions or events used to indirectly tune the system to the
user’s needs) [45][7].

In general, vision-based human motion analysis systems used for MMHCI can be
thought of as having mainly 4 stages: (1) motion segmentation, (2) object classifica-
tion, (3) tracking, and (4) interpretation. While some approaches use geometric primi-
tives to model different components (e.g., cylinders for limbs, head, and torso for
body movements, or for hand and fingers in gesture recognition), others use feature
representations based on appearance. In the first approach, external markers are often
used to estimate body posture and relevant parameters. While markers can be accu-
rate, they place restrictions on clothing and require calibration, so they are not desir-
able in many applications. Appearance based methods, on the other hand, do not re-
quire markers, but require training (e.g., with machine learning, probabilistic
approaches, etc.). Methods that do not require markers place fewer constraints on the
user and are more desirable, as are those that do not use geometric primitives (which
are computationally expensive and often not suitable for real-time processing).

Next, we discuss some specific techniques for body, gesture, and gaze. The motion
analysis steps are similar, so there is some inevitable overlap in the discussions. Some
of the issues for gesture recognition, for instance, apply to body movements and gaze
detection.

3.1 Large-Scale Body Movements

Tracking of large-scale body movements (head, arms, torso, and legs) is necessary to
interpret pose and motion in many MMHCI applications Since extensive surveys have
been published [83][84][22][1][44], we discuss the topic briefly.

The authors of [87] identify three important issues in articulated motion analysis:
representation (joint angles or motion of all the sub-parts), computational paradigms
(deterministic or probabilistic), and computation reduction. They propose a dynamic
Markov network that uses Mean Field Monte Carlo algorithms so that a set of low
dimensional particle filters interact with each other to solve a high dimensional prob-
lem collaboratively.

Body posture analysis is important in many MMHCI applications. In [77], the au-
thors use a stereo and thermal infrared video system to estimate driver posture for
deployment of smart air bags. The authors of [64] propose a method for recovering
articulated body pose without initialization and tracking (using learning). The authors
of [3] use pose and velocity vectors to recognize body parts and detect different ac-
tivities, while the authors of [5] use temporal templates.

In some emerging MMHCI applications, group and non-command actions play an
important role. The authors of [40] present an approach to segment a meeting accord-
ing to actions such as monologue, presentation, white-board, discussion, and note
taking. HMMs are used with a combination of audiovisual features. Visual features
are extracted from head and hand/forearm blobs: the head blob is represented by the
vertical position of its centroid, and hand blobs are represented by eccentricity and
angle with respect to the horizontal. Audio features include energy, pitch, and speak-
ing rate, among others. The authors of [24] use only computer vision, but make a
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distinction between body movements, events, and behaviors, within a rule-based sys-
tem framework.

Important issues for large-scale body tracking include whether the approach uses
2D or 3D, desired accuracy, speed, occlusion and other constraints. Some of the is-
sues pertaining to gesture recognition, discussed next, can also apply to body tracking.

3.2 Gesture Recognition

Psycholinguistic studies for human-to-human communication [41] describe gestures
as the critical link between our conceptualizing capacities and our linguistic abilities.
Humans use a very wide variety of gestures ranging from simple actions of using the
hand to point at objects to the more complex actions that express feelings and allow
communication with others. Gestures should therefore play an essential role in
MMHCI [32][86][19]. A major motivation for these research efforts is the potential of
using hand gestures in various applications aiming at natural interaction between the
human and the computer-controlled interface. These applications range from virtual
environments [31], to smart surveillance [78] and remote collaboration [19].

There are several important issues that should be considered when designing a ges-
ture recognition system [57]. The first phase of a recognition task is choosing a
mathematical model that may consider both the spatial and the temporal characteris-
tics of the hand and hand gestures. The approach used for modeling plays a crucial
role in the nature and performance of gesture interpretation. Once the model is de-
tected, an analysis stage is required for computing the model parameters from the
features that are extracted from single or multiple input streams. These parameters
represent some description of the hand pose or trajectory and depend on the modeling
approach used. Among the important problems involved in the analysis are that of
hand localization [94], hand tracking [89], and the selection of suitable features [32].
After the parameters are computed, the gestures represented by them need to be clas-
sified and interpreted based on the accepted model and based on some grammar rules
that reflect the internal syntax of gestural commands. The grammar may also encode
the interaction of gestures with other communication modes such as speech, gaze, or
facial expressions. As an alternative, some authors have explored using combinations
of simple 2D motion based detectors for gesture recognition [29].

In any case, to fully exploit the potential of gestures for an MMHCI application,
the class of possible recognized gestures should be as broad as possible and ideally
any gesture preformed by the user should be unambiguously interpretable by the in-
terface. However, most of the gesture-based HCI systems allow only symbolic com-
mands based on hand posture or 3D pointing. This is due to the complexity associated
with gesture analysis and the desire to build real-time interfaces. Also, most of the
systems accommodate only single-hand gestures. Yet, human gestures, especially
communicative, naturally employ actions of both hands. However, if the two-hand
gestures are to be allowed, several ambiguous situations may appear (e.g., occlusion
of hands, intentional vs. unintentional, etc.) and the processing time will likely in-
crease. Another important aspect that is increasingly considered is the use of other
modalities (e.g., speech) to augment the MMHCI system [51][72]. The use of such
multimodal approaches can reduce the complexity and increase the naturalness of the
interface for MMHCI [50].
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3.3 Gaze Detection

Gaze, defined as the direction to which the eyes are pointing in space, is a strong
indicator of attention, and it has been studied extensively since as early as 1879 in
psychology, and more recently in neuroscience and in computing applications [12].
While early eye tracking research focused only on systems for in-lab experiments,
many commercial and experimental systems are available today for a wide range of
applications.

Eye tracking systems can be grouped into wearable or non-wearable, and infrared-
based or appearance-based. In infrared-based systems, a light shining on the subject
whose gaze is to be tracked creates a “red-eye effect:” the difference in reflection
between the cornea and the pupil is used to determine the direction of sight. In ap-
pearance-based systems, computer vision techniques are used to find the eyes in the
image and then determine their orientation. While wearable systems are the most
accurate (approximate error rates under 1.4° vs. errors under 1.7° for non-wearable
infrared), they are also the most intrusive. Infrared systems are more accurate than
appearance-based, but there are concerns over the safety of prolonged exposure to
infrared lights. In addition, most non-wearable systems require (often cumbersome)
calibration for each individual.

Appearance-based systems use both eyes to predict gaze direction, so the resolu-
tion of the image of each eye is often small, which makes them less accurate. In [82],
the authors propose using a single high-resolution image of one eye to improve accu-
racy. Infrared-based systems usually use only one camera. The authors of [66] have
proposed using multiple cameras to improve accuracy.

One trend has been to improve non-wearable systems for use in MMHCI and other
applications where the user is stationary (e.g., [74][66]). For example, the authors of
[74] monitor driver visual attention using a single, non-wearable camera placed on a
car’s dashboard to track face features and for gaze detection.

There have also been advances in wearable eye trackers for novel applications. In
[90], eye tracking data is combined with video from the user’s perspective, head di-
rections, and hand motions to learn words from natural interactions with users; the
authors of [58] use a wearable eye tracker to understand hand-eye coordination in
natural tasks, and the authors of [13] use a wearable eye tracker to detect eye contact
and record video for blogging.

The main issues in developing gaze tracking systems are intrusiveness, speed, ro-
bustness, and accuracy. The type of hardware and algorithms necessary, however,
depend highly on the level of analysis desired. Gaze analysis can be performed at
three different levels [7]: (a) highly detailed low-level micro-events, (b) low-level
intentional events, and (c) coarse-level goal-based events. Micro-events include mi-
cro-saccades, jitter, nystagmus, and brief fixations, which are studied for their physio-
logical and psychological relevance by vision scientists and psychologists. Low-level
intentional events are the smallest coherent units of movement that the user is aware
of during visual activity, which include sustained fixations and revisits. Although
most of the work on HCI has focused on coarse-level goal-based events (e.g., using
gaze as a pointer [73]), it is easy to foresee the importance of analysis at lower levels,
particularly to infer the user’s cognitive state in affective interfaces (e.g., [25)]).
Within this context, an important issue often overlooked is how to interpret eye-
tracking data (see [67] for discussion on eye tracking data clustering).
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4 Affective Human-Computer Interaction

There is a vast body of literature on affective computing and emotion recognition
[2][55][61]. Affective states are intricately linked to other functions such as attention,
perception, memory, decision-making, and learning [15]. This suggests that it may be
beneficial for computers to recognize the user's emotions and other related cognitive
states and expressions.

Researchers use mainly two different methods to analyze emotions. One approach
is to classify emotions into discrete categories such as joy, fear, love, surprise, sad-
ness, etc., using different modalities as inputs to emotion recognition models. The
problem is that the stimuli may contain blended emotions and the choice of these
categories may be too restrictive, or culturally dependent. Another way is to have
multiple dimensions or scales to describe emotions. Two common scales are valence
and arousal. Valence describes the pleasantness of the stimuli, with positive or pleas-
ant (e.g, happiness) on one end, and negative or unpleasant (e.g., disgust) on the
other. The other dimension is arousal or activation. For example, sadness has low
arousal, whereas surprise has a high arousal level. The different emotional labels
could be plotted at various positions on a two-dimensional plane spanned by these
two axes to construct a 2D emotion model [35][23].

Facial expressions and vocal emotions are particularly important in this context, so
we discuss them in more detail below.

4.1 Facial Expression Recognition

Most facial expression recognition research (see [54] and [17] for two comprehensive
reviews) has been inspired by the work of Ekman [15] on coding facial expressions
based on the basic movements of facial features called action units (AUs). In this
scheme, expressions are classified into a predetermined set of categories. Some meth-
ods follow a “feature-based” approach, where one tries to detect and track specific
features such as the corners of the mouth, eyebrows, etc. Other methods use a “re-
gion-based” approach in which facial motions are measured in certain regions on the
face such as the eye/eyebrow and the mouth. In addition, we can distinguish two types
of classification schemes: dynamic and static. Static classifiers (e.g., Bayesian Net-
works) classify each frame in a video to one of the facial expression categories based
on the results of a particular video frame. Dynamic classifiers (e.g., HMM) use sev-
eral video frames and perform classification by analyzing the temporal patterns of the
regions analyzed or features extracted. They are very sensitive to appearance changes
in the facial expressions of different individuals so they are more suited for person-
dependent experiments [10]. Static classifiers, on the other hand, are easier to train
and in general need less training data but when used on a continuous video sequence
they can be unreliable especially for frames that are not at the peak of an expression.

4.2 Emotion in Audio

The vocal aspect of a communicative message carries various kinds of information. If
we disregard the manner in which a message is spoken and consider only the textual
content, we are likely to miss the important aspects of the utterance and we might



