


OPERATING SYSTEMS

A Systematie View

WILLIAM S. DAVIS, Miami University

A
vy
ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts
Menlo Park, California - London - Amsterdam - Don Mills, Ontario - Sydney



Copyright © 1977 by Addison-Wesley Publishing Company, Inc. Philippines copyright 1977 by
Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission of the publisher. Printed in the United States
of America. Published simultaneously in Canada. Library of Congress Catalog Card No.
76-10414.

ISBN 0-201-01118-2
BCDEFGHIJ-HA-798



PREFACE

In the summer of 1968, I took my first course in operating systems. The
course was taught by an IBM (my employer at the time) programmer. The
class was composed of ‘‘new hires’’ and ‘‘transfers,’”’ all extremely in-
terested in demonstrating their skills to a new employer; in educational
parlance, we’d say they were well motivated.

We began by digging into the actual code for the SVC interrupt handler
and moved up from there. It didn’t work. We were all ‘‘lost’’ right from the
start. When intelligent, well-motivated students don’t learn, something is
wrong. A ‘‘bit-level’’ discussion of actual operating system code is not the
way to introduce a student to operating systems.

Working as a systems analyst and programmer over the next three
years, 1 gradually, through a process of ‘‘osmosis,”’ began to learn about
operating systems. As a result of a fortunate series of job assignments, I
became deeply involved with two very different operating systems: one, a
developing special-purpose production control system based on DOS, and
the other, a general-purpose OS/MVT system. A comparison of similarities
and differences contributed greatly to my education. Things really began to
“‘click’ into place once I had formulated a good, general overview of how all
the diverse pieces of a given operating system fit together. To put it another
way, I began to understand operating systems only after learning to view
them as operating systems rather than as groups of diverse, independent
functions.

After leaving IBM and resuming my teaching career at Miami Univer-
sity, I was asked to teach a course in Operating Systems, thus beginning a
search for a textbook. Most good Operating System texts are aimed at the
advanced undergraduate or graduate computer science major. Their ap-



vi PREFACE

proach tends to be quite mathematical; they assume substantial prior expo-
sure to both computer concepts and higher mathematics. I was to teach
sophomores.

Are sophomore-level operating system courses unusual? I think not.
Our approach, in Miami’s Department of Systems Analysis, is to give our
students a solid introduction to the use of computers during their first two
years, branching into such topics as: mathematical modeling, operations
research, systems analysis and design, and courses in related disciplines
during the junior and senior years. In addition to our core of majors, we have
a large number of actual and ‘“de facto’’ minors interested (for employment-
related reasons) in our freshman and sophomore sequence; most majors and
minors take Operating Systems. In addition, we have two Associate Degree
programs, both incorporating the Operating System course. Other schools
offer similar programs; a knowledge of computer programming and the use
of computers is viewed as a valuable ‘‘marketable skill’’ in today’s job
market.

One quarter of trying to teach operating system theory was enough to
convince me that a mathematical approach does not work at the sophomore
or minor level; the comments and input of my colleagues merely reinforced
my view. My own experience told me that a ‘‘code it’’ approach doesn’t
work either. What was needed, I felt, was a functional-level approach,
showing the student the major components of an operating system and
illustrating how these pieces fit together to form an operating system. I’'ve
tried it, and it works! Given the results of my classroom experiments and my
view of the potential market, I decided to write this book.

My approach is most definitely not theoretical; my intent is to show why
operating systems are needed and what, at a functional, ‘‘macro’’ level, they
do. This book does not get into a bit-level discussion of the actual implemen-
tation of operating system modules on a given machine. I’ve assumed that
students using this book have completed at least one full year of computer-
related studies, usually including an introductory course and one or more
programming courses; assembler language exposure would be an ideal, but
it’s not essential. A professional programmer working with almost any
language should have very little trouble with this material. Almost no back-
ground in theoretical mathematics has been assumed.

The book has been divided into five sections. Any operating system, at
its core, is a resource manager; thus Part I discusses the basic resources of
any computer system: hardware, software, and data. My intent in this
section is to present basic concepts as they relate to operating system
development and to fill in any gaps in the prior preparation of a given student
(thus the few pages on number systems for the benefit of the compiler level
programmer). To most students, part (perhaps even all) of this material will
be review in nature.



PREFACE vii

In Part II, we begin to move into the development of operating systems,
stressing why they are needed and, at a very general level, what functions
are performed. Such topics as: compilers, libraries, access methods, multi-
programming, spooling, and others are introduced in this section.

Job Control Language is introduced in Part I11, with Chapter 7 covering
the basics of IBM’s DOS job control and Chapters 8 and 9 getting into S job
control. My intent is to show the need for a formal means of job control on a
modern, multiprogrammed system; any job control language would do
equally well, so instructors should feel free to substitute the job control
language of an ‘‘on-site’’ non-IBM computer. This material is inserted near
the beginning of the book to allow adequate time for the completion of
student exercises. Part II1 can be skipped, totally or in part, without losing
text continuity.

In Part IV we begin to dig more deeply into actual operating systems,
describing the operating environment of the IBM System/360 and System/
370 series of computers (the PSW, interrupts, and channel communications)
and showing how, at a macro level, two different operating systems, DOS
and OS/MFT, are implemented in this environment. IBM products were
chosen as examples simply because IBM is the dominant supplier of com-
puters, meaning that more students will have access to IBM equipment than
to the equipment of any other manufacturer. After covering these two
systems in some depth, we move on to the general question of memory
management, covering such topics as: variable length regions, dynamic
memory relocation, program segmentation and paging, virtual memory, and
memory hierarchies.

In the final section, we leave general-purpose operating systems and
move into a discussion of a number of special-purpose systems. The primary
objective of this section is to illustrate that an operating system, to be
considered effective, must meet the objectives of a given application. In this
section, we also spend some time on the ‘*hardware vs. software’’ question,
indicating that many operating system functions can be implemented
through either hardware or software, or a combination of both.

The book is designed for second year students in a program oriented
toward the use of computers rather than toward the design of computers. In
addition to the traditional four-year school preparing majors or minors,
community colleges should find this book useful. In a theoretical *‘computer
science’’ program, this book might support a first course in operating sys-
tems, giving the student a framework against which to measure later, more
advanced studies.

Hamilton, Ohio W. S. D.
October 1976



ABRIDGED CONTENTS

1 Introduction and Overview

PART I The Basic System Resources

2 Bits, Numbers, Codes, and Software
3 Hardware
4 Data Management and File Structures

PART II Operating System Development

5 Single Program Systems: the Second Generation
6 Multiprogramming and Time-Sharing

PART III Job Control Language for the IBM System/360
and System/370

7 Job Control under IBM’s Disk Operating System

8 Job Control Language for the IBM Operating System/360
and System/370—JOB and EXEC Cards

9 The DD Card

PART IV Operating System Concepts

10 The Functions and Objectives of an Operating System

11 Operating Principles of the IBM System/360

12 IBM System/360 Disk Operating System

13 IBM System/360 Operating System Multiprogramming
with a Fixed Number of Tasks

ix

24
40
55

57
73

93
95
110
126

157

159
165
201

219



xii

CONTENTS

Chapter 4 Data Management and File Structures

Overview

Elementary definitions — field, record, and file
Record formats

Sequential files

Direct access

Simple direct access

Indirect addressing

The cross-reference list

Indexed sequential files

Record chaining

Virtual storage files

Which organization is best?
Volumes, labels, and other things
Summary

PART II OPERATING SYSTEM DEVELOPMENT

Chapter 5 Single Program Systems: the Second Generation

Overview

Setup minimization

Compilation time and object modules
The I/O and computer speed disparity
Blocking, buffering, and access methods
Spooling

Checkpoint/restart

Timers

Minimizing run time — a summary
Core utilization — overlay structures
Data management

Summary

Chapter 6 Multiprogramming and Time-Sharing

Overview

Input/output vs. processing speed in the third generation
Multiprogramming — one solution

Time-sharing

Software for multiprogramming and time sharing
Allocating CPU time

Core allocation

40
40
41
43
46
46
47
48
49
50
51
52
52
53

57
58
60
63
65
68
69
69
69
70
71
72

73
74
75
77
78
79
81



CONTENTS

Core allocation — job scheduling
Registers

1/0 device allocation

I/0 device allocation — spooling
I/0 devices and time-sharing
Control of data resources
Libraries

The operating system

Summary

PART III JOB CONTROL LANGUAGE FOR THE IBM SYSTEM/360
AND SYSTEM/370 '

Chapter 7 Job Control Under IBM’s Disk Operating System

Overview

The DOS JOB card

The DOS EXEC card

Compiling and link-editing

Cataloging programs

DOS 1/0 control

Changing standard assignments — the ASSGN statement
Other DOS job control functions

Summary

Chapter 8 Job Control Language for the IBM Operating System/360 and

System/370 — JOB and EXEC Cards

Overview

The cards

Jobs and job steps

Cataloged procedures

The language — basic parameters

The JOB card

The JOB card — accounting information
The JOB card — programmer name
The JOB card — the CLASS parameter
The JOB card — the TIME parameter
The REGION parameter

The MSGLEVEL parameter

Default options

Other JOB card parameters

Some JOB cards

xiii

82
85
85
86
87
88
88
90
91

95
96
97
99
101
104
106
106
107

110
111
111
113
114
115
116
117
117
117
118
118
119
120
120



xiv CONTENTS

Continuing a JCL statement onto a second card
The EXEC card

The COND or condition parameter

Other EXEC parameters

Summary

Chapter 9 The DD Card

Overview

DD cards and data control blocks

Unit-record equipment

The UNIT parameter — unit-record equipment

The data control block (DCB) parameter — unit record

Magnetic tape

The UNIT parameter — tape

The VOLUME parameter — tape

The LABEL parameter — tape

The DCB parameter — tape

The disposition parameter — tape

The data set name parameter — tape

Creating a tape data set — sample DD cards
The DUMMY parameter — tape

Retrieving an existing tape data set

Direct access storage devices

The unit parameter — direct access files

The VOLUME parameter — direct access files
The LABEL parameter — direct access files
The DCB parameter — direct access files

The disposition parameter — direct access files

The data set name parameter — direct access files

The SPACE parameter — direct access files
The system input and system output devices
Job step qualifiers on a DD card

The PROC statement

A complete example

Summary

PART IV OPERATING SYSTEM CONCEPTS

Chapter 10 The Functions and Objectives of an Operating System

Overview
The system resources

120
120
122
124
124

126
127
132
132
133
134
135
137
138
139
140
141
142
143
143
144
144
145
145
145
145
145
146
149
150
151
151
154

159
159



CONTENTS XV

Measures of effectiveness 160
Conflicting objectives 161
Constraints 162
Stating system objectives 162
The next few chapters 163

Chapter 11 Operating Principles of the IBM System/360

Overview 165
Addressing core on the IBM System/360 165
The program status word 166
Variable length instructions 169
Condition codes 171
Core protection — the core protect key 171
Other PSW fields 171
Controlling 1I/0 172
Privileged instructions 175
The interrupt concept 176
Interrupt types 179
External interrupts 180
Supervisor call (SVC) interrupts 181
Program interrupts 182
Machine-check interrupts 183
Input/output interrupts 184
Permanent storage assignments 185
Masking 185
The program mask 188
Program states 189
Interrupt priority 189
A typical example 190
Other manufacturers — other approaches 196
Summary 198
A final note 199

Chapter 12 IBM System/360 Disk Operating System

Overview 201
DOS system geography 201
Getting started — system generation 203
Initial program load 203
Loading application programs — single program initiation 204
The job stream approach 204

The job control program 205



xvi CONTENTS

Spooling 207
Multiprogramming and physical I/O control system 208
The logical input/output control system 210
Multiprogramming summary 212
Core allocation 213
I/0 device control 213
Librarian functions 216
Summary 217

Chapter 13 IBM System/360 Operating System Multiprogramming with a
Fixed Number of Tasks

Overview 219
The basic structure of MFT 220
Jobs and tasks 222
Job management — the master scheduler 224
Job management — the reader/interpreter 225
Job management — the initiator/terminator 225
Job management — the output writer 226
Job management — summary 227
Task management 227
Tying things together — basic MFT control blocks 228
An example 230
Our example — a summary 243
I/0O controls under MFT 244
I/0 control — the unit control block 245
I/0 control — the task input/output table 246
I/0 control — the DCB and DEB 246
I/0 control — the OPEN macro 247
I/0 control — the application program/channel program link 248
Data management 249
System geography 250
System generation and flexibility 251
MFT limits 251
Summary 252

Chapter 14 Multiprogramming with Dynamic Core Allocation

Overview 254
Improving core efficiency 255
OS/MVT 256
Dynamic program relocation 258

Parallel processing 260



CONTENTS

Subtasking

Roll-in and roll-out
Foreground/background processing
Multiprocessing

Other manufacturers

Summary

Chapter 15 Segmentation, Paging, and Virtual Memory

Overview

Core efficiency

Segmentation

Paging

Segmentation and paging

Segmentation Systems and paging systems — conclusions
Virtual memory

Multiple virtual memories

Multiple levels of real memory

Virtual storage access methods

Segmentation, paging, and virtual memory — advantages
Segmentation, paging, and virtual memory — problems
Conclusions

Summary

PART V SPECIAL PURPOSE SYSTEMS AND APPLICATIONS

Overview of Part V

Chapter 16 A Manufacturing Process Control System

Overview

The manufacturing operation — computer circuit boards
The first step — the board line

Step two — printed circuit etching and drilling
The third step — component assembly

Labor and material controls

The fourth step — final test

Process control system requirements

Reliability

Response time

Availability

Why wont a general-purpose operating system do?
Production control — a final note

Summary

xvii

261
262
264
265
267
269

271
271
272
278
281
284
284
290
291
292
293
294
295
295

297

299
300
305
308
310
311
312
312
313
315
316
317
317
318



xviii CONTENTS

Chapter 17 Data Base Management and Data Communications

Overview 320
Early computer applications — cost justification 320
The MIS idea 321
The central data base approach 323
The advantages of the central data base approach 324
Some disadvantages and costs 325
Data base implementation, a typical data structure 326
Queries 329
Data communications management 329
Putting the pieces together — an MIS system 330
The impact of the applications programmer 333
Future directions 334
Summary 334

Chapter 18 Multicomputer Applications

Overview 336
Some trends in hardware development 337
Within the store — the mini 338
The central computer 341
Why use the mini? 342
Why not do it all on the mini? 342
Summary 343
The twenty-four hour teller 344
Source data automation 345
Intelligent terminals 346
Summary 346

Chapter 19 A summary of Operating System Development
Overview 348
Early development — the first generation 348
The second generation 348
Early third generation 350
Into the 1970s 355
Toward the future 356
Summary 357
APPENDIX A A Summary of DOS Job Control Statements 358

APPENDIX B Summary of Job Control Language for the
IBM System/360 and System/370 Operating System 365

Index 381



CHAPTER 1

Introducetion and Overview

The purpose of any data-processing system is to convert data into more useful
information; i.e., to process data. An electronic data-processing system com-
bines hardware, software, and data resources toward meeting this objective.
These resources are expensive. Many firms spend millions of dollars each year
on hardware—often even more on programming and data management. Be-
cause of this high cost, it is essential that these resources be used as efficiently as
possible. Operating systems have been developed with this idea in mind—to
improve the efficiency of a data-processing system.

Note carefully the use of the word “system.” A well-designed operating
system is not concerned with just hardware or just software or just data manage-
ment, but with optimizing the way in which all of these resources work together
in achieving some desired objective. Not all data-processing systems have the
same objective—a manufacturing process-control system may stress speed of
response while an educational system at a university may stress flexibility. Thus
not all installations will want the same operating system; “best” is a relative
term. In this text, we’ll be discussing operating systems not as an end in them-
selves but as solutions to a number of data-processing problems, always keeping
system objectives in mind.

The purpose of this book is to give the reader a basic understanding of what
an operating system is and how it works. Specific examples of operating system
design and implementation will be used to illustrate a number of points; we'll
try to avoid the bit-level discussion of the intimate working details of the pro-
ducts of any one manufacturer or the theory of operating system design. Our
objective is to illustrate the problems handled by operating systems and not any
single set of solutions to these problems. The text is designed to support a first



2 INTRODUCTION AND OVERVIEW

course in operating systems. The concentration is on the application of this
specialized software to a real-world environment; this is not a theoretical text.

The book is divided into five parts. Part I, Chapters 2 through 4, covers the
basic concepts of software, hardware, and data—the system resources which are
managed by an operating system. For many students, much of this material
will be review in nature; it’s included because subsequent chapters assume a
knowledge of this information.

Part II, Chapters 5 and 6, follows the rapidly developing technology of the
past two decades and the parallel evolution of operating systems. The concepts
of multiprogramming and time sharing are introduced in this section. Emphasis
is placed on the importance of economic factors in these developments.

In Part III, we study modern programmer/system communications by
analyzing two common job control languages. In Chapter 7, job control for
IBM’s Disk Operating System (DOS) will be studied; Chapters 8 and 9 con-
centrate on the job control language for IBM’s full operating system (OS/JCL),
with the JOB and EXEC cards being covered in Chapter 8 and the DD card in
Chapter 9. The products of IBM have been chosen for a very obvious reason—
IBM is the dominant force in the computer market. Not all features of the job
control languages are covered in this section, only those more commonly
used. The intent is to illustrate modern programmer/system communica-
tions and not to present an exhaustive course in JCL; the beginning pro-
grammer should, however, find the application orientation of this material
useful in handling many everyday programming problems.

Part 1V, Chapters 10 through 15, covers a number of general-purpose
operating systems. Chapter 10 summarizes the basic functions of any operating
system, concentrating on various measures of system effectiveness. The next
three chapters, 11 through 13, are related; their purpose is to describe a hard-
ware environment and two different operating systems designed to work under
this environment. Operating principles of the IBM System/360 (Chapter 11)
and two of IBM’s operating systems, DOS and OS/MFT, have been chosen to
illustrate these ideas. Actually, the products of almost any computer manu-
facturer would have done as well; however, the products of IBM are known to
more potential readers than are those of any other firm. Chapter 14 generalizes
the material presented in the preceding three chapters, relating it to other
manufacturers’ products. The final chapter in this section, Chapter 15, intro-
duces the key concepts of virtual memory and paging.

Finally, in Part V, Chapters 16 through 19, a number of special-purpose
systems and their associated support software will be discussed. Chapter 16
will concentrate on production-control applications where the high cost of
manufacturing downtime creates a need for rapid response and high reliability.
In Chapter 17, data base management and data communications are discussed



INTRODUCTION AND OVERVIEW 3

in the context of a management information application. Applications in-
volving more than one computer, primarily minicomputer and full-sized
computer combinations, are discussed. In each of these chapters, we'll be
considering the application in its environmental context, with emphasis on how
the operating system and other support software help to maximize the utiliza-
tion of system resources given the measures of effectiveness most crucial to the
application.

The text has been written to support a four-credit semester course: by

skipping either Part III or Part V, it could support a four-credit quarter
course. For most students, much of Part I will be a review. Exposure to at least
one programming language has been assumed: readers with no assembly-
language background should read the chapter on software carefully, as a basic
understanding of binary numbers will be important in Part IV when we get
into the operating principles of the IBM System/360. The chapter on hardware
relates equipment to a number of concepts we'll be discussing later in the book;
channels, control units, and teleprocessing hardware may be unfamiliar. The
material on data and file organizations may be new to many readers.
' Part II is written in a very nontechnical manner and should provide the
student, business manager, engineer, or computer professional with a good,
basic understanding of what operating systems are all about. The chapters on
job control might be used to introduce this topic at any level. Parts IV and V
concentrate on operating systems functions, at a “macro” level, avoiding the
bit-level details of operating-system design: given an understanding of the
introductory material in Part I, a programmer with a background in any
language should find the material quite readable.



