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Preface

The theory of random graphs was founded by Erdds and Rényi (1959, 1960,
1961a,b) after Erdos (1947, 1959, 1961) had discovered that probabilistic
methods were often useful in tackling extremal problems in graph theory.
Erdos proved, amongst other things, that for all natural numbers g > 3 and
k > 3 there exist graphs with girth g and chromatic number k. Erdos did not
construct such graphs explicitly but showed that most graphs in a certain
class could be altered slightly to give the required examples.

This phenomenon was not entirely new in mathematics, although it was
certainly surprising that probabilistic ideas proved to be so important in the
study of such a simple finite structure as a graph. In analysis, Paley and
Zygmund (1930a,b, 1932) had investigated random series of functions. One of
their results was that if the real numbers ¢, satisfy %.*.,c2 = oo then
Y2 o + ¢, cos nx fails to be a Fourier-Lebesgue series for almost all choices of
the signs. To eéxhibit a sequence of signs with this property is surprisingly
difficult: indeed, no algorithm is known which constructs an appropriate
sequence of signs from any sequence c, with 2°_,c2 = 0. Following the
initial work of Paley and Zygmund, random functions were investigated in
great detail by Steinhaus (1930), Paley, Wiener and Zygmund (1932), Kac
(1949), Hunt (1951), Ryll-Nardzewski (1953), Salem and Zygmund (1954),
Dvoretzky and Erdos (1959) and many others. An excellent account of these
investigations can be found in Kahane (1963, 1968). Probabilistic methods
were also used by Littlewood and Offord (1938) to study the zeros of
random polynomials and analytic functions. Some decades later, a simple but
. crucial combinatorial lemma from their work greatly influenced the study of
random finite sets in vector spaces.

The first combinatorial structures to be studied probabilistically were

vii



viil PREFACE

tournaments, chiefly because random tournaments are intrinsically related to
statistics. The study began with Kendall and Babington-Smith (1940) and a
concise account of many of the results is given by Moon (1968b). Szele (1943)
was, perhaps, the first to apply probabilistic ideas to extremal problems in
combinatorics. He observed that some tournament of order n must have at
least n!/2" "' Hamilton paths, because the expected number of Hamilton
paths is n!/2" 1. Once again, it is not easy to construct a tournament of order
n with this many Hamilton paths. A little later, Erdos (1947) used a similar
argument, based on the expected number of k-cliques in a graph of order n, to
show that the Ramsey number R(k) is greater than 2%/2.

Existence results based on probabilistic ideas can now be found in many
branches of mathematics, especially in analysis, the geometry of Banach
spaces, number theory, graph theory, combinatorics and computer science.
Probabilistic methods have become an important part of the arsenal of a
great many mathematicians. Nevertheless, this is only a beginning: in the next
decade or two probabilistic methods are likely to become even more
prominent. It is also likely that in the not too distant {uture it will be possible
to carry out statistical analyses of more complicated systems. Mathe-
maticians who are not interested in graphs for their own sake should view the
theory of random graphs as a modest beginning from which we can learn a
variety of techniques and can find out what kind of results we should try to
prove about more complicated random structures.

As often happens in mathematics, the study of statistical aspects of graphs
was begun independently and almost simultaneously by several authors,
namely Ford and Uhlenbeck (1956), Gilbert (1957), Austin, Fagen, Penney
and Riordan (1959) and Erdds and Rényi (1959). Qccasionally all these
authors are credited with the foundation of the theory of random graphs.
However, this'is to misconceive the nature of the subject. Only Erdos and
Rényi introduced the methods which underlie the probabilistic treatment of
random graphs. The other authors were all concerned with enumeration
problems and their techniques were essentially deterministic.

There are two natural ways of estimating the proportion of graphs having a
certain property. One may obtain exact formulae, using P6lya’s enumeration
theorem, generating functions, differential operators and the whole theory of
combinatorial enumeration, and then either consider the task completed or
else proceed to investigate the asymptotic behaviour of the exact but compli-
cated formulae, which is often a daunting task. This approach, whose spirit is
entirely deterministic, was used in the first three papers mentioned above and
has been carried further by numerous authors. Graphical enumeration is
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discussed in detail in the well known monograph of Harary and Palmer
{1973) and the recent encyclopaedic treatise by Goulden and Jackson (1983).
The connection between graphical enumeration and statistical mechanics is
emphasized by Temperley (1981). The theory of enumeration is a beautiful,
rich and rapidly developing area of combinatorics, but it has very little to do
with the theory of random graphs.

The other approach was introduced by Erdos and Rényi and is expounded
in this volume. It has only the slightest connection with enumeration. One is
not interested in exact formulae but rather in approximating a variety of exact
values by appropriate probability distributions and using probabilistic ideas,
whenever possible. As shown by Erdos and Rényi, this probabilistic approach
is often more powerf{u! than the deterministic one.

It 15 often helpful to imagine a random graph as a living organism which
evolves with time. It is born as a set of n isolated vertices and develops by
successively acquiring edges at random. Our main aim is to determine at what
stage of the evolution a particular property of the graph is likely to arise. To
make this more precise, we shall consider the properties of a ‘typical’ graph in
a probability space consisting of graphs of a particular type. The simplest
such probability space consists of all graphs with a given set of n labelled
vertices and M edges, and each such graph is assigned the same probability.
Usually we shall write C v for a random element of this probability space.
Then, if H is any gmph with the given vertex set and M edges, then

P(Gy = H) = ]/(Z) where N = (;)

In most cases we shall have a sequence of probability spaces. For each
natural number n there will be a probability space consisting of graphs with
exactly n vertices. We shall be interested in the properties of this space as
n— oo. In this situation we shall say that a typical element of cur space has a
property Q when the probability that a random graph on n vertices has Q
tends to 1 as n— co. We also say that almost every (a.e) graph has property Q.
Thus almost every Gy, has property Q if the proportion of graphs with this
property tends to 1 as n— oo. Once we are given such probability spaces of
graphs, numerous natural questions arise. is a typical graph connected? Is it
k-connected? Is the chromatic number at least k? Does almost every graph
contain a triangle? Does it have diameter at most d? Is almost every graph
Hamiltonian?

The greatest discovery of Erdds and Rényi was that many important
properties of graphs appear quite suddenly. If we pick a function M = M(n)
then, in many cases, either almost every graph G,, has property Q or else
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almost every graph fails to have property Q. In this vague sense, we have a
0—1 law. The transition from & property being very unlikely to it being-very
likely is usually very swift. To make this more precise, consider a inonotone
(increasing) property Q, i.c. one for which a graph has ¢ whenever one of its
subgraphs has Q. For many such properties there is a threshold function
M(n). If M(n) grows somewhat slower than M,(n), then almost every Gy
fails to have Q. If M(n) grows somewhat faster than M y(n), then almost every
G has the property Q. For cxample, My(n) = 3nlogn is a threshold function
for connectedness in the following sense: if w{n)— 20, no matter how slowly,
then almost every G is disconnected for M(n) = in (logn— w(n)) and almost

every G is connected for M(n) = 1n (logn+ w(n)).

ny.
As the proportion M/N of edges increases, where, as always, N = < 2) is the

total number of possible edges, the shape of a typical graph G, passes
through several clearly identifiable stages, in which many of the important
parameters of a typical graph are practically determined. When M is neither
too small nor too large, then the most important property is that, for every
fixed k, any k vertices in a typical graph have about the same number of
neighbours. Thus a typical random graph is rather similar to an ideal regular
graph whose automorphism group is transit've on small sets of vertices. Of
course, there is no such non-trivial regular graph, and in many applications
random graphs are used precisely because they approximate an ideal regular
graph.

This book is the first systematic and extensive account of a substantial
body of results from the theory of random graphs. Considerably shorter treat-
ments of random graphs can be found in various parts of Erdos and Spencer
(1974), in Chapter VIII of Marshall (1971), in Chapter VII of Bollchas
(1979a), and in the review papers by Grimmett (1980), Bollobas (i981f) and
Karoniski (1982). Despite over 750 references, several topics are not covered
in any detail arid we can make no claim to compieteness. Perhaps the greatest
omission is the extensive theory of random trees, about which the reader
could get some idea by consulting the beautiful book by Moon (1970a) and
- the papers by Moon and Meir listed in the references. I might justify this
particular omission because the tools used in its study are often those of
ecnumeration rather than probability theory. However, here and in general,
the choice of topics is mainly a reflection of my own interests.

The audience I had in mind when writing this book consisted mainly of
research students and professional mathematicians. The volume should also
be of interest to computer scientists. Random graphs are of ever increasing
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importance in this field and several of the sections have been written expressly
for computer scientists.

The monograph was planned to be consnderab]y shorter and was to be
completed by early 1981. However, I soon realized that I had little control
over the length which was dictated by the subject matter I intended to
explore. Temptations to ease my load by adopting short-cuts have been rife
but, for the reader’s sake, I have tried to resist them. During its preparation I
have given several courses on the material, notably for Part III for the
University of Cambridge in 1980/81 and 1983/84. The first seven chapters
were complete by the summer of 1982 and were circulated quite widely. I gave
a series of lectures on these at the Waterloo Silver Jubilez Conference. These
lectures were published only recently (1984d). 1 have written the book
wherever 1 happened to be: the greatest part at Louisiana State University,
Baton Rouge; a few chapters in Cambridge, Waterloo and Sio Paulo; and
several sections in Tokyo and Budapest. I hope never again to travel with
200 1b of paper!

My main consideration in selecting and presenting the material was to
write a book which I would like to read myself. In spite of this, the book is
essentially self-contained, although familiarity with the basic concepts of
graph theory and probability theory would be helpful. There is little doubt
that r'na.ny readers will use this monograph as a compendium of results. This
is a pity, partly because a book suitable for that purpose could have been
produced with much less effort than has gone into this volume, and also
because proofs are often more important than results: not infrequently the
reader will derive more benefit from knowing the methods used than from
familiarity with the theorems. The list of contents describes fairly the material
presented in the book.

The graph theoretic notation and terminology used in the book are stan-
dard. For undefined concepts and symbols the reader may consult Bollobas
(19784, 1979a).

The exercises at the end of each chapter vary greatly in importance and
difficulty. Most are designed to clarify and complete certain points but a few
are important resuits. The end of a proof, or its absence, is indicated by the
symbol [J; the floor of x (i.e. the greatest integer less than, or equal to, x) is
denoted by [ x]; and the ceiling of x by [x]. With very few exceptions, the
various parameters and random variables depend on the number n of vertices
of graphs under consideration and the inequalities are only claimed to hold
when n is sufficiently large. This is often stated but it is also implicit on many
other occasions. The symbols ¢, c,,... which appear without any explana-
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tion, are always independent of n. They may be absolute constants or may
depend on other quantities which are independent of n. To assist the reader, it
will often be stated which of these is the case.

It is a great pleasure to acknowledge the debt I owe to many people for
their help. Several of my friends kindly read large sections of the manuscript.
Andrew Thomason from Exeter, Istvan Simon from Sio Paulo, Masao
Furuyama from Kyoto and Boris Pittel from Columbus were especially
generous with their help. They corrected many errors and frequently im-
proved the presentation. In addition, I benefited from the assistance of
Andrew Barbour, Keith Carne, Geoff Eagleson, Alan Frieze and Jonathan
Partington. Many research students, including Keith Ball, Graham
Brightwell and Colin Wright, helped me find some of the mistakes; for the
many which undoubtedly remain, I apologize. I am convinced that without
the very generous help of Andrew Harris in using the computer the book
would still be far from finished.

It was Paul Erdos and Alfréd Rényi who, just over 20 years ago, introduced
me to the subject of random graphs. My active interest in the field was
aroused by Paul ErdGs some years later, whose love for it I found infectious; I
am most grateful to him for firing my enthusiasm for the subject whose beauty
has given me so much pleasure ever since.

Finally, I am especially grateful to Gabriella, my wife, for her constant
support and encouragement. Her enthusiasm and patience survived even
when mine failed.

Baton Rouge B.B.
December, 1984
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Chapter 1

Probability Theoretic Preliminaries

The aim of this chapter is to present the definitions, formulae and results of
probability theory we shall need in the main body of the book. Although we
assume that the reader has had only a rather limited experience with prob-
ability theory and, if somewhat vaguely, we do define almost everything, this
chapter is not intended to be a systematic introduction to probability theory.
The main purpose is to identify the facts we shall rely on, so only the most
impoftant—and perhaps not too easily accessible—results will be proved.
Since the book is primarily for mathematicians interested in graph theory,
combinatorics and computing, some of the tesults will not be presented in full*
generality. It is inevitable that for the reader who is familiar with probability
theory this introduction contains too many basic definitions and familiar
facts, while the reader who has not studied probability before will find the
chapter rather difficult.

There are many excellent introductions to probability theory: Feller
(1966), Breiman (1968), K. L. Chung (1974) and H. Bauer (1981}, to name
only four. The interested reader is urged to consult one of these texts for a
thorough introduction to the subject.

1. NOTATION AND BASIC FACTS

A probability space is a triple (Q, X, P), where Q is a set, X is a o-field of
subsets of Q, P is a non-negative measure on X and P{Q) = 1. In the simplest
case Q is a finite set and T is 2(Q), the set of all subsets, of Q. Then P is
determined by the functionQ — [0, 1], w— P({w}), namely

P(4)= ) P({w}), AcQ.
wed

1



2 PROBABILITY THEORETIC PRELIMINARIES L1
A real valued random variable (r.v.) X is a measurable real-valued function on
a probability space, X: Q— R.

Given a real valued r.v. X, its distribution ﬁznctwn is F(x) = P(X < x),
— 0 < x < c0. Thus F(x) is monotone increasing, continuous from the left,
lim,_, _, F(x) =0and lim,_, ., F(x) = 1. If there is a function f(t) such that
F(x) = [* . f(t)de, then f(t) is the density function of X. We say that a
sequence of r.vs (Y,) tends to X in distribution if lim,_, ,P(Y, <x)=
P(X < x) = F(x), whenever x is a point of continuity of F(x). The notation
for convergence in distribution is Y, -% X. Of course, convergence in distribu-
tion depends.only on the distributions of the r.vs in question.

If h is any real-valued function on R, the expectation of h(x) is

ao

E(h(X)) = L h(X)dp ='[ h(x)dF(x).

In particular, the mean of X, usually denoted by y, is E(X') and the nth moment
of X is E(X"). Of course, these need not exist but, as they do exist for the r.vs
we are going to consider, we shall assume that they exist. The variance of X is
0*(X) = E{(X —p)*} = E(X?)—pu? and the standard deviation is the non-
negative square root of this.

If X is a non-negative r.v. with mean g and ¢t > 0, then

u=P(X = tu)p.
Rewriting this slightly we get Markov’s inequality :
P(X > tp) < 1/t (1)

Now let X be a real-valued r.v. with mean y and variance 2. If d > 0, then
clearly
E{(X -} > P(X —u| > d)d®
so we have Chebyshev’s inequality:
P(X -yl > d) < 0*/d>. @)
As a special case of this inequality we see that if u # 0, then
P(X =0) < P(X —p| > p) < a?/p?. (2)

In .faci; one can do a little better, for by the Cauchy inequality with Q, =
{w: X(w) # 0} we have

“E(X)? = (J XdP)z < (f XMP)(J ldP) = E(X?){1-P(X = 0)}.
Q, Q, Q,
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Hence
P(X =0) < 1 —E(X)*/E(X?) = ¢*/(u* +a?). (3)

Most of the r.vs we encounter are non-negative integer valued, so unless it
is otherwise indicated (for example, by the existence of the density function),.
we assume that the r.v. takes only non-negative integer values. The distribu-
tion of such a r.v., X, is given by the sequencc

po=P(X =k, k=01,...

Clearly p, > 0 and 2, p, = !. Then the mean of X is 3, kp, and the nth
moment is E(X") =2*_ k"p,. f X, X,,X,,... are non-negative integer
valued r.vs then X,-% X if

lim P(X,=k)=P(X =k) =

n— oo
for every k.

. Write #(X) for the distribution (Iaw) of ar.v. X. Given integer-valued r.vs

X and Y, the total variation distance of #(X)and £(Y)is

d(L(X), L(Y)) = sup{|P(XeA)—P(YEA)|: A c Z}.

With a slight abuse of notation occasionaily we write d(X, Y) or d(X, Z(Y))
instead of d(£(X), Z(Y)).

Clearly X,-% X iff d(X,, X)—0. Of course, any information about the
speed of convergence of d(X,, X) to 0 is more valuable than the fact that X,
tends to X in distribution. ’

Given a probability space (Q, Z,P) and a set Ce X, P(C) > 0, the prob-
abiiity of a set A€ X conditional on C is defined as

P(A|C) = P(A ~ C)/P(C).

Then P, = P(-|C)is a probability measure on (€, X). A r.v. X is said to be
taken conditiona’ on C if it is considered as a function on~({, X, P¢); the
expectation of this new r.v., denoted by E(X|C), is said to be the expectation
of X conditional on C.

Following Feller (1966) we use the notation (x), = x(x—1)...(x —r+1).

Thus (n) = (n),_, =n! and (:) = (n),/(k),. We define the rth factorial
mamentofarv XasE,(X) = E{(X),}. Thus if

P(X = k) =p,,



4 PROBABILITY THEORETIC PRELIMINARIES I.1
then
Er(X) = z pk(k)r
k=r

Note that if X denotes the number of objects in a certain class then E, (X) is
the expected number of ordered r-tuples of elements of that class.
Ther.vs X, X,,... are said to be independent if for each n

»

P(X; =kyi=1,...,m) = [] P(X,=k)

for every choice of k., k,, ..., k,.
Note that E(X + Y) = E(X)+ E(Y) always holds and if X, X,,..., X, are
independent, E(X;) = u; and E(X,;—p;)* = o then E(¥, X;) = L, 11; and

o) o] -

In our calculations we shall ofien need the following rather sharp form of
Stirling’s formula proved by Robbins (1955):

(o) e, @

where 1/(12n+1) < 2, < 1/12n.

Throughout the book we use Landau’s notation O{ f(n)} for a term whxch
when divided by f(n), remains bounded as n— co. Similarly h(n) = o{g(n)}
means that h{n)/g(n)— 0 as n— oo. Also, h(n) ~ g(n) expresses the fact that
h(n)/g{n}— 1 as n— co. Thus h{(n) ~ g(n) is equivalent to h(n)—g(n) =
o{g(n)}. Note that a weak form of Stirling’s formula (4)is n! ~ (n/e)"\/fﬁ. If
the symbols o, O or ~ are used without a variable, then we mean that the
relation holds as n— 0.

An immediate consequence of (4) is that if 1 < m < n/2, then

—vem bo(mN n N/ "
o116 »7_5;(;) (m) (m(n m)) <m>
t /a\"( n n i "
SV/_T;(;) <n~m) '<'"("—"')) o v

On putting p =m/n and g = | — p we find. that if m— o0 and n —m—s o0, then

! (:1) ~ (2m) P (prg®) " (pgm)~ V2.



