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INTRODUCTION

One of the most significant developments in recent math-
ematics is the resurgence of interest in algebraic geometry,
a trend dating more or less from the publication of Weil’s
Foundations. Up to the present time, this revival has mani-
fested itself only at the graduate level and beyond. At the
undergraduate level on the other hand, the geometric tradi-
tions, if represented at all, usually have been presented in
the form of a course in analytic or synthetic projective ge-
ometry, culminating in the theory of the conic sections.
The transition from this to modern algebraic geometry is
beset with imposing obstacles, as most people who have
gone through the experience will testify. As matters stand
at present, to exaggerate only slightly, students have vir-
tually no geometric experience of much significance be-
tween their freshman study of conics and quadrics and
some graduate course devoted, more likely than not, to
proving the Riemann-Roch Theorem in six easy lessons —
using sheaves — and this sometimes without having ever
beheld a curve possessed of a singular point. One purpose
of this book is to assist graduate students who find them-
selves in this position and to obviate for them, at least
partially, the necessity of struggling with the confusion,
obscurity, and downright error which sometimes arise as
one extracts the needed information from some of the older
literature.

Nevertheless, the book is addressed primarily to under-
graduates and is intended to supplement, or to provide an
alternative to, more traditional subject matter. In this way
it is hoped to suggest some idea of the actual concerns of
present-day geometers, and at the same time to make the
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way easier for those going on to a serious study of alge-
braic geometry. The prerequisites have been kept to an
absolute minimum. I construe these to consist of elemen-
tary analytic geometry up through the conics and quadrics,
the fundamentals of linear algebra (which may be studied
concurrently), and a knowledge of calculus up through par-
tial derivatives. A brief outline of the necessary algebra
has been included by way of preamble. It is sufficient to
consult this only as the necessity arises; the reader may
begin safely with Chapter I.

There is perhaps a legitimate question, particularly
among the experts, as to whether it is desirable — or in-
deed possible— to say anything worthwhile about alge-
braic geometry at the undergraduate level. My own answer
is in the affirmative and this book represents the results of
my attempt to deal with the question. In view of the ab-
sence of precedents, it is difficult to be convinced that
one has chosen the ‘‘right’’ things to talk about. The
choices made here are admittedly tentative, and it is hoped
that further experimentation by others, more competent than
myself, will lead to a more definitive result.

From a technical point of view, the principal aim of the
book is to close part of the gap between elementary ana-
lytic geometry and abstract algebraic geometry along the
lines, for instance, of Lang’s recent book [10]. This en-
tails a transition to a new attitude of mind both with regard
to subject matter and to method. This transition is ex-
emplified, for instance, in recasting the theory of tangents
in algebraic terms. This necessitates reformulation of the
required calculus in purely algebraic form, thus extirpating
the notion of limit and allowing generalization to arbitrary
ground fields. Another theme of constant recurrence is the
necessity of working over a sufficiently large field, usu-
ally algebraically closed, in order that the geometric re-
sults may take on their most felicitous form. It is hoped
that in this way some light will be shed on the reasons be-
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hind the rather strong initial algebraic assumptions that
are usually made in abstract algebraic geometry.

A few words may clarify the point of view taken on cer-
tain topics. First of all, points are defined as n-tuples —
not even as equivalence classes under certain admissible
transformations. This is quite sufficient for the purpose at
hand, and bases the theory on a very simple set-theoretical
construction rather than on the invention of a new class of
things called ‘‘points’’ which are apt to evoke nonsensical
metaphysical questions. One consequence of the point of
view adopted here is that a transformation always appears
as something that moves points around, and not as some-
thing that ‘‘changes co-ordinates.’’ It is, of course, im-
portant to understand the two ways of looking at these
things. Usually, however, this is carefully dealt with in
courses in linear algebra and it is unnecessary to discuss
it here.

Most of what goes on in this book is done over arbitrary
fields. This is the only real divergence from current prac-
tice in algebraic geometry where it is customary to work
over a so-called universal domain. There are several
reasons for this decision. In the first place, since generic
points are not discussed here, there is no need for trans-
cendentals. So far as algebraic closure is concerned, I
have tried to show why it is desirable, and to do this one
naturally has to start without it. Actually, a great deal of
what is done in this book will work over finite fields, a
fact that it seemed worthwhile to point out for the reas-
surance of young mathematicians who have just heard of
Godel’s Theorem and expect the imminent collapse of math-
ematics! Whatever may be said of such an attitude on their
part, it is certainly indicative of a serious concern for our
subject and so should be regarded with sympathetic under-
standing. Certainly no harm is done; they either recover or
else go on to become experts in mathematical logic.

The matter of terminology in algebraic geometry is at
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present in an unsettled state, especially in view of certain
recent activities in Paris. Fortunately, however, this diffi-
culty is hardly relevant for a book at this level. The only
conventions made here that call for comment are that all
fields are assumed to be commutative and that the term
‘‘variety’’ is reserved for algebraic sets that are absolutely
irreducible.

I am deeply indebted to several of my friends for their
criticisms and helpful advice; in particular to Douglas
Derry, William L. Hoyt, Kenneth May, and Maxwell Rosen-
licht. The critical comments of A. Seidenberg on an early
version of the manuscript were especially helpful to me. I
also wish to thank Mrs. Florence Valentine for typing the
manuscript. I am especially grateful to Ralph Spielman
whose wise counsel and encouragement were instrumental
in my decision to write this book.

Chapel Hill, North Carolina W.E.J.
September 1962
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ALGEBRAIC PRELIMINARIES

We collect here some of the basic algebraic facts that we
use. These are part of the standard equipment of all math-
ematicians and so our account is confined to the basic
definitions. The account given by Bourbaki [3] of these
matters is generally regarded as definitive. Among the
best source books in English is Zariski and Samuel [18].
For linear algebra the books of Halmos [6], Hoffman and
Kunze [8], and Jaeger [9] can be consulted; the last two
give an extensive account of the computational aspects of
determinant theory. Basic set-theoretical facts, which we
assume known, are given in Halmos [5].

A set S is said to admit a law of binary composition if
with each ordered pair (z,y) of elements of S is associated
an element of S. This element will be denoted here by
z o y and will be called the ‘‘product” or ‘‘sum’’ of z and y
(in that order), whichever is the more suggestive in a par-
ticular context.

1. A group is a set G together with a binary law of compo-
sition (a,8) — a o b such that

(i) @ is closed under (o); that is, @ o b is defined and is

an element of @ for all a, b € G.
(iiyao(boc)=(aobd)ocforalla b, cel.
(iii) The equations @ o = b and y o a = b each have so-

lutions for any a, b €G.

Remark: For purposes of verification, axiom (iii) is usually

replaced by axioms (iii") and (iii"") together:

(iii") There is an element e € G, the identity element, such
thataoe=a=eocaforallae@.

(iii”") For every a € @ there is an element a’- € G, the in-
verse of a, suchthat a o @’ = a" o a=e.
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If a o =10 o a, the group G is said to be abelian or
commutative .
2. A ring is a set R together with two laws of binary com-
position, (a@,0)—sa + & and (a,0) — a- b, called addition
and multiplication respectively, such that
(i) K is an abelian group under addition.
(ii) R is closed under multiplication.
(iiiya-(b-¢c)=(a-b).cforalla, b,c eR.
(ivia-(b+c)y=a-b+a.cand(a+bd).c=a-.c
+b.cforall a, b, c €R.
Ifa.b=56.aforall a, b € R, then R is said to be
commutative.
3. A field k is a commutative ring for which the set of ele-
ments not equal to 0 (where 0 is the additive identity
element) form a group under multiplication. (This is often,
if somewhat imprecisely, described by saying that a field
behaves like the set of rational (or real) numbers with re-
spect to the basic arithmetic rules of addition, subtraction,
multiplication, and division.) A field % is said to be alge-
braically closed if every polynomial equation with coeffi-
cients in k has a root in %; for example, the field of com-
plex numbers. If 1 + ... + 1 (n times) = 0 in a field %,
where 1 is the multiplicative identity element, then the
smallest such strictly positive integer n is a prime number
called the characteristic of k; if there is no such integer
n, then % is said to be of characteristic zero.
4. In working over arbitrary fields, the notion of polynemial
must be refined beyond its use in elementary algebra. The
trouble is that a polynomial in the elementary sense may be
identically zero without its ‘‘looking like’’ the zero poly-
nomial. For instance, in this sense, the polynomial 22 -
is identically zero in the field Fy of residue-classes of in-
tegers reduced modulo 2 (cf. Chapter I). We avoid this dif-
ficulty by regarding ‘‘z’’ only as a symbol: something in its
own right beyond the fact that we can substitute things for
it. The metaphysical hiatus in this definition can be



ALGEBRAIC PRELIMINARIES 3

avoided as follows: let N be the set of integers greater than
or equal to 0. A polynomial in one ‘‘variable’’ over a field
k is a mapping P: N — & such that P(n) = O for all n e N
except a finite number. The idea is that P (n) is the coeffi-
cient of what used to be called . For further details, and
the generalization to polynomials in several variables, the
reader is referred to Zariski and Samuel [18].

5. Matrices occur in mathematics almost always in connec-
tion with linear transformations. We define matrices as fol-
lows, following Chevalley [4]: let I be the set of integers

1, 2,- -+, m and J the set of integers 1, 2,- -+, n. Anm
by n matrix ® with coefficients in a ring R is a mapping

®: (¢,7)—> a;; of the cartesian product I x J into £. We can
identify (for notational purposes) the matrix ® with the array

Xgg oo Xyp

a a

m1l e o mn

The first subscript ¢ of a;; is called the row indez and the
second subscript j the column index. It V:(4,j)—>B;; is
another such matrix, we define their sum to be the matrix
®+ ¥:(i,j)—> a;; + Bi;. The set of m by n matrices with
coefficients in B forms an abelian group under addition. If
® is an ! by m matrix and ¥ an m by n matrix, we define
their product to be the 7 by n matrix ® oW : (4,5) —

Z:—1 aik Bkj- The product ® oV is defined if and only

if the column index of ® is equal to the row index of ¥. The
motivation for these definitions lies in the theory of linear
transformations. The set [R], of n by n matrices with coef-
ficients in aring B itself forms a ring under the matrix op-
erations.

6. A vector space V over a field k is an additive abelian
group for which a multiplication of elements of V by ele-
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ments of k£ is defined such that

) A(w+v)=ru+ Arv.

)y A+ p)v=2rAv+po.
(iii) Au = uwA.
(iv) 1 v =u.
Here u, v € V and A, u € k£ and 1 is the multiplicative iden-
tity element of £. (In some parts of mathematics, axiom
(iii) is weakened so that there is a distinction between left
and right vector spaces. This generalization will be unnec-
essary for our purposes.)

A particularly important example is the vector space of
n-tuples over a field k. If (4, -, @,) and (y1,+ + +, ¥n)
with z;,y; € k are two such n-tuples we define addition com-
ponent-wise, (21, + « +, ;) + (Y1,° * +, Yn) =
(xl + Y1,y Ty + yn)) and define A(‘Tl,' ALY xn)=
(@1,++«, 2. )A=(Azy,- + -, Aa,) for A € k. (For readers
of austere tastes, n-tuples over % can be defined as map-
pings of the set of integers 1, 2,. - ., n into k. An even
more austere approach, in terms of the most primitive set-
theoretical notions is given in Halmos [5].)

A set of vectors vy,. -+, v, €V is said to be linearly
dependent if there is a relation A (v + « -+ + A,v, = 0 with
A; € k and some A; # 0; otherwise it is linearly independent.
A vector space V is said to be finite dimensional if there
exist a finite number of vectors vy, - +, v, such that
every v €V can be expressed in the form v = Ajw + ..« +
A,v, with the A; € k. If this is so, then the vectors
vy, ++, ¥, can be chosen to be linearly independent; then
the A; are unique, and the integer n is unique. This value
of n is called the dimension of V and v, - « +, v, consti-
tute a basis of V. Any n linearly independent elements of
V form a basis.

7. Let V be a vector space of dimension n over k. A linear
transformation of V is a mapping of V into V, having the

properties ¢ (% + v) = ¢ (u) + ¢ (v) and ¢ (Au) = A ¢ (v) where
u, v €V, and A € k. If  is another linear transformation of
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V we define ¢ + ¢y :u —p(u) + Y (u) and ¢ o Y :u —>

& (¥ (w)). The linear transformations of V form a ring. We
say ¢ is tnvertible if there is a linear transformation ¢’
such that ¢ o " = ¢ o ¢ is the identity mapping on V.
The elementary theory of determinants will be assumed
known. Determinants are defined directly for linear trans-
formations in Halmos [6]. A linear transformation is in-
vertible if and only if its determinant is non-zero. For an
account of the techniques of determinant theory see Jaeger

(9.



AFFINE SPACES

1. Affine spaces and algebraic sets

Algebraic geometry is concerned with the study of loci of
polynomial equations. For the most part, metrical proper-
ties of euclidean geometry, distance, and angle, are not
considered, and so we work in rather more general kinds of
spaces called affine and projective. These can be defined
synthetically along the lines of Euclid’s Elements, but it is
customary nowadays in algebraic geometry to start with
purely algebraic definitions.

In this chapter we shall consider affine spaces. Let k& be
any field. By affine n-space over k, denoted A,(k), is
meant the set of n-tuples (24, .-+, z,) where z; €k. Such
an n-tuple is called a point. In case % is the field of real
numbers, it is harmless to think of 4,(%) as being euclidean
n-space without any mention of distance. In particular, if
n =2 or 3 it is possible to draw ‘“‘pictures’’ (graphs) in the
usual sense. If f(z,---, #,) = 0 is a polynomial equation
in n variables with coefficients in %, the set of points in
A, (k) satisfying this equation is called an algebraic hyper-
surface. Since we shall consider only loci given by poly-
nomial equations, the adjective ‘‘algebraic’’ will generally
be omitted. The intersection of a finite number of hyper-
surfaces is called an algebraic set. (Some writers use the
term ‘‘algebraic variety’’; a convention seems to have de-
veloped, however, to reserve this for algebraic sets with
certain extra conditions which are too technical for discus-
sion here.) If n = 2 or 3, hypersurfaces are called curves



