_ ANDREW C.STAUGARRD, R. ouc .,

STRUCTURING
TECHNIQUES

AN INTRODUCTION USING TURBO PASCAL

X0 (global to entire program, except function 23

_Procedure 1 Block e s

@

STRUCTURING

TECHNIQUES
AN INTRODUCTION
USING TURBO PASCAL

Andrew C. Staugaard, Jr.
The School of the Ozarks
Department of Computer Science

L= >

=£E Prentice Hall, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

Staugaard, Andrew C.
Structuring techniques.

Includes index.

1. Pascal (Computer program language) 2. Turbo
Pascal (Computer program) 3. Structured programming.
1. Title.
QA76.73.P2S736 1989 005.26 88-12482
ISBN 0-13-853425-X

Editorial/production supervision and interior design: LisA ScHULZ GARBOSKI
Cover design: DIANE SAXE
Manufacturing buyer: MARY NOONAN and SALLYE ScoTT

— © 1989 by PRENTICE-HALL, INC.
% A Division of Simon & Schuster

Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

1098765432
ISBN 0-13-853425-X

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

To the one who has given me the life, strength,
and wisdom to write this book

PREFACE

With this text, you will learn how to create computer solutions to common problems found
in mathematics, science, and business. In other words, this text will not only teach you
the Pascal language, but more important, it will teach you how to define problems and
plan their solution so that they can be easily “*coded’ using the Pascal language, or any
computer language for that matter. Good problem definition and solution planning via
algorithmic development are discussed early-on and carried as a theme throughout the text.

This text has been written to provide the undergraduate student a first exposure to
problem solving using the Pascal language as vehicle. The text is designed to be used at
the introductory level, assuming that the student has no previous background in programming
of any kind. However, it is assumed that the student is familiar with basic algebra and
right angle trigonometry concepts such as those that might be found in high school algebra
and trig courses.

Each chapter includes numerous example programs and problems that specifically
apply Pascal programming to simple problems found in mathematics, science, and business.
The program examples and problems have been written in short, understandable modules
that stress the fundamental concepts being discussed. In addition, several real world
programming ‘‘tasks’’ have been included so that the student learns how to integrate simple
program modules into comprehensive computer program solutions.

The text begins with a general overview of computer hardware and software tech-
nology in the first part of Chapter 1. This material can be covered rather rapidly if the
students have already had some programming experience. However, the later part of Chapter
I discusses what I call the **Programmer’s Algorithm’’ and should be covered thoroughly.
The Programmer’s Algorithm is a step-by-step procedure that I have used to get students
started on the right programming track by considering good problem definition, solution

Preface

planning, and documentation. Of particular importance is solution planning via algorithmic
development. I feel that once the student has defined the problem and planned a solution
via an algorithmic structure, the actual program coding is secondary to the problem solving
task. As a result, I stress good algorithmic development throughout the text. I have used
a pseudocode algorithmic language that is simple and whose structure is very similar to
Pascal. This approach allows for easy translation of the algorithm to the coded Pascal
program.

Chapter 2 familiarizes the student with concepts in Pascal that are not found in non-
structured languages like BASIC. It is important here that the student grasp the idea of
data typing, since this is a primary feature of Pascal. In addition, the idea of program
structure and the modular top-down design approach of a structured language are introduced
in this chapter.

The student really begins to get his/her hands dirty in Chapter 3 where they learn
how to get information in and out of a Pascal program. Special consideration is given to
interactive user-friendly programming. The discussion in Chapter 3 is extended into Chapter
4 where the student learns how to perform standard arithmetic, Boolean, and function
operations in Pascal. Several simple program tasks are illustrated at the end of this chapter
to illustrate these operations.

Up to this point, the student has been writing simple straight-line programs. In
Chapter 5 the If/Then, If/Then/Else, and Case operations are discussed to introduce the
decision making element into the program structure. This is followed with a discussion of
the Pascal iteration operations of While/Do, Repeat/Until, and For/Do in Chapter 6.

In Chapter 7, students really get the flavor of a structured language when they learn
how to write their own functions and procedures in Pascal. From this point on, the idea
of a modular top-down design approach to problem solving is emphasized. Such an approach
using a structured language, like Pascal, is mandatory if the student plans on tackling
complex programming tasks like those that are typically found in industry.

Chapter 8 begins with a discussion of user-defined data, another important feature
of Pascal. Here, the student learns how to tailor a program to meet the application. This
is followed by a comprehensive discussion of the array data structure. Simple one-dimen-
sional arrays are discussed first, followed by a discussion of multi-dimensional arrays. The
last section of the chapter applies arrays to the solution of simultanecous equations via
Cramer’s rule.

Records are the topic of Chapter 9. Here the student learns about the limitation of
an array for storing different data types, and discovers the record as a solution. Record
declaration and access in Pascal are covered thoroughly in this chapter using several real
world business applications.

Files are discussed in Chapter 10 to conclude the text. The student first learns how
to declare and access disk files through several simple examples. Then, the student learns
how to construct general procedures that can be used to create, expand, read and change
disk files to meet any given application.

The Pascal compiler employed is TURBO Pascal. TURBO Pascal was chosen due
to its wide usage in the educational market. It is readily available at an affordaole price
and runs on just about any microcomputer, including the IBM PC. Although TURBO

Preface

xi

Pascal is the primary vehicle for this text, the text is also appropriate for use with other
versions of Pascal, such as Standard Pascal, UCSD Pascal, or MacPascal. 1 have made
an effort to discuss the differences between TURBO and the others where appropriate.

A unique feature of this text is the inclusion of a student disk which contains the
answers to the odd chapter questions and programming problems. The programming problem
solutions are filed individually on the disk so that the student can call the program from
disk, examine it, and actually execute it to observe its operation. Many of these working
programs can be further used by the student to solve common problems found in mathe-
matics, science and business. In addition, the student disk can also serve as a work disk
for the student’s own programs, thus eliminating the need for the student to purchase a
separate work disk.

Enjoy!

Andrew C. Staugaard, Jr.

CONTENTS

PREFACE

1 GETTING ACQUAINTED WITH COMPUTERS, PROGRAMS,
AND PASCAL

1-1 The Hardware

1—2 The Software

1-3 The Programmer’s Algorithm

1—4 Developing Algorithms
Chapter Summary
Questions and Problems

2 GETTING ACQUAINTED WITH A STRUCTURED
LANGUAGE: PASCAL

2—1 The Idea of Data Types

2—-2 Standard Data Types

2-3 Constants and Variables

2—4 Program Structure—From Beginning to End
Chapter Summary
Questions and Problems

11
15
20
31
32

34

34
37
45
54
56
57

vi

3 GETTING THINGS IN AND OUT: READING AND WRITING

31
3-2
3-3

Getting Things Out: Writing

Getting Things In: Reading

User-Friendly Programs: Interactive Programming
Chapter Summary

Questions and Problems

4 WRITING SIMPLE PASCAL PROGRAMS

4-1
4-2
4-3
4-4

Arithmetic Operations

Boolean Operations

Standard Functions in Pascal

Learning by Example: Simple Program Tasks
Chapter Summary

Questions and Problems

5 MAKING DECISIONS: SELECTION

51
5-2
5-3
54
5-5

The IF/THEN Statement

The IF/THEN/ELSE Statement
Nested IF’s

The CASE Statement

Putting It All Together

Chapter Summary

Questions and Problems

6 LOOPING OPERATIONS: ITERATION

61
6-2
6-3
64

The WHILE/DO Loop

The REPEAT/UNTIL Loop

The FOR/DO Loop

An Application Task: Parallel Circuit Analysis
Chapter Summary

Questions and Problems

7 SUBPROGRAMS: FUNCTIONS AND PROCEDURES

7-1
7-2
7-3
7-4

Functions

Procedures

Scoping Out Variables: Block Structure
Recursive Functions and Procedures
Chapter Summary

Questions and Problems

Contents

61

61
78
85
88
89

94

95
98
102
105
119
119

124

124
131
135
138
143
148
148

153

153
161
165
171
177
178

185

186
197
202
206
211
212

Contents

8 USER-DEFINED DATA AND ARRAYS

81
8-2
8-3
8—4

User-Defined Data Types

One-Dimensional Arrays

Multidimensional Arrays

An Application for Arrays: Simultaneous Equation Solution
Chapter Summary

Questions and Problems

9 RECORDS

9-1
9-2
9-3
94

10 FILES

101
10-2
10-3

Record Structure and Declaration
Record Access

Record Structures

Variant Records

Chapter Summary

Questions and Problems

Fundamental Concepts and Ideas
Accessing File Information

Text Files

Chapter Summary

Questions and Problems

A Getting Started with TURBO

B SOLUTIONS TO ODD-NUMBERED QUESTIONS AND

PROBLEMS

C HOW TO USE THE STUDENT DISK

INDEX

TURBO QUICK REFERENCE

vii

217

218
225
242
257
268
268

274
274
278
286
294
300
301
303
303
306
325
329
329

332

344

409

411

417

GETTING ACQUAINTED
WITH COMPUTERS,
PROGRAMS,

AND PASCAL

INTRODUCTION

This first chapter has been written to provide you with an introduction to computers, computer
programs, and Pascal in general. You will learn about the relationship between the computer
system and the computer programs that operate the system. In particular, you will study
the steps required to solve just about any programming problem.

Of extreme importance is the last section of this chapter, which teaches you how to
develop algorithms. Make sure you understand this material and work the related problems
at the end of the chapter. As you become more experienced in programming, you will find
that the “‘secret’’ to successful programming is good planning through the use of algorithms.

Any computer system, regardless of its size can be broken down into two major
components: hardware and software. So, let’s begin with a comprehensive overview of
each.

1-1 THE HARDWARE

You undoubtedly have seen some of the hardware components of a computer. These are
the physical devices that you can see and touch, such as those shown in Figure 1-1a. This
typical microcomputer system obviously has a keyboard for user input, a display screen
for output, and magnetic disk drives for program and data storage. Two very important
parts of the system that cannot be seen, because they are inside the console, are the central
processing unit and its working memory.

The block diagram in Figure 1-1b shows all of the major hardware sections of the

Chap. 1 / Getting Acquainted with Computers, Programs, and Pascal

(a)

Memory
CPU
Primary
B :
ALU : Secondary
Control
unit
110
Internal : B
registers u Input
:>
Output

(b)

Figure 1-1 (a) A typical microcomputer system and (b) its hardware
structure, or architecture.

Sec. 1-1 / The Hardware 3

system. From this figure, you see that the system can be divided into five functional parts:
the central processing unit (CPU), main working or primary memory, secondary memory,
input, and output.

The Central Processing Unit (CPU)

The central processing unit (CPU) is the brains of the entire system. This is where all of
the calculations and decisions are made. In a microcomputer system, the entire CPU is
contained within a single integrated circuit (IC) chip called a microprocessor. In fact, this
is what distinguishes a microcomputer from a mini or mainframe computer. In mini and
mainframe computers, several ICs make up the CPU, not just one as in a microcomputer.
A typical microprocessor IC is pictured in Figure 1-2, along with a magnified view of the
chip itself.

There are three basic functional regions within the CPU that you should know about.
They are the arithmetic logic unit (ALU), the control unit, and the internal registers.

The Arithmetic Logic Unit (ALU)

As its name implies, the arithmetic logic unit performs all of the arithmetic and logic
ogenmons within the CPU. The arithmetic operations performed by the ALU include
addition, subtraction, multiplication, and division. These four basic arithmetic operations
can be combined to perform just about any mathematical calculation, from simple arithmetic
to calculus.

Logic operations performed by the ALU are comparison operations that are used to
compar » letters, and special characters. The three basic logic comparison op-
erations w(), less than (<), and greater than (>). These three basic operations
can be conﬁmed to form the three additional logic operations of not equal (<>), less than
or equal to (< =), and greater than or equal to (> =).

Table 1-1 summarizes the arithmetic and logic operations performed by the ALU.
Notice the operations symbols listed in the table. These are the symbols that you will use
later to perform arithmetic and logic operations when writing Pascal programs.

The Control Unit

The control unit section of the CPU directs and coordinates the activity of the entire system.
This section interprets program instructions and generates electrical signals to the other
parts of the system in order to execute those instructions. The control unit communicates
with other sections of the CPU via internal signal paths called buses. The control unit often
is likened to a traffic cop or orchestra leader, because it directs the activity of the entire
system.

Chap. 1 / Getting Acquainted with Computers, Programs, and Pascal

Microprocessor

WL WL ey

T

o o
MITITT AL = s | =L

» o o SRTw——=

: - AOORESS . Dan: =
: .Exscgnon . EXECUTION X3 : -
- UMT Wl -

S i, i ve————

Figure 1-2 A microprocessor chip is the CPU of a microcomputer
system. (Copyright by Motorola, Inc. Used by Permission.)

Sec. 1-1 / The Hardware 5

TABLE 1-1

A Summary of Arithmetic and Logic
Operations Performed by the ALU
Section of the CPU

Arithmetic Operations Symbol
Addition +
Subtraction -
Multiplication *
Division /

Logic Operations Symbol
Equal to =
Not equal to >
Less than <
Less than or equal to i

Greater than
Greater than or equal to

V
Il

Internal Registers

The internal register section of the CPU contains temporary storage areas for program
instructions and data. In other words, these registers temporarily hold information while
it is being processed by the CPU. Several different types of registers are employed. They
include accumulators, data registers, address registers, and general-purpose registers.
It is not important that you know the precise operation of each of these registers for high-
level Pascal programming. However, they will become important to you if you ever do any
assembly language programming. More about this later.

Primary Memory

Primary memory often is called main working memory. The reason for this is that primary
memory is used to store programs and data while they are being ‘‘worked,”” or executed,
by the CPU. As Figure 1-3 shows, there are two basic types of primary memory: random
access memory (RAM) and read-only memory (ROM).

Random Access Memory (RAM)

Random access memory is memory for you, the user. When you enter a program or data
into the system, it goes into RAM. This is why the amount of RAM often is quoted when
you buy a computer system. You most likely have heard the terms 64K, 128K, 256K, and
so on, when describing a microcomputer system. This is the amount of RAM, or user
memory, that the system contains. Here, the letter K stands for the value 1,024. Thus, a

6 Chap. 1 / Getting Acquainted with Computers, Programs, and Pascal

Primary
Memory

Figure 1-3 Primary memory consists of RAM (user memory) and
ROM (system memory).

64K system has 64 X 1,024 = 65,536 bytes of RAM, a 128K system has 128 X 1,024
= 131,072 bytes of RAM, and so forth. The more bytes of RAM a system has, the more
room there is for your programs and data. As a result, larger and more complex programs
can be executed with larger amounts of RAM.

By definition, RAM is read/write memory. This means that information can be written
into, or stored, into RAM and read from, or retrieved, from it. When writing new information
into a given area of RAM, any previous information in that area is destroyed. Fortunately,
you don’t have to worry about this when entering programs, since the system makes sure
that the new program information is not written over any important old information.

Once information has been written into RAM, it can be read, or retrieved, by the
CPU during program execution. A read operation is nondestructive. Thus, when data are
read from RAM, the RAM contents are not destroyed and remain unchanged.

One final point about RAM: It is volatile. This means that any information stored
in.RAM is erased when power is removed from the system. As a result, any programs
that you have entered in main working memory (RAM) will be lost when you turn off the
system. You must remember to save your programs on a secondary memory device, such
as a disk, before turning off the system power.

Read-Only Memory (ROM)

Read-only memory often is called system memory because it stores system-related programs
and data. These system programs and data take care of system-related tasks such as reset,
cursor control, binary conversions, and so on. All of these system programs are part of a
larger operating system program that is permanently stored in ROM or on a disk. We say
that the ROM and the operating system programs that it contains are *‘transparent’’ to you,
the user. The word transparent is appropriate, since you do not ‘‘see’” or concern yourself

Sec. 1-1 / The Hardware 7

with the operating system programs during the course of programming in a high-level
language, like Pascal.

As its name implies, read-only memory can only be read from and not written into.
Consequently, information stored in ROM is permanent and cannot be changed. Since the
information is permanent, ROM must be nonvolatile. This means that any information
stored in ROM is not lost when power is removed from the system. Due to this feature,
ROM programs often are called firmware.

You might have heard the terms mask-programmed ROM, EPROM, or EEPROM.
These are different forms of ROM that might be part of a system. Mask-programmed ROMs
are programmed by the ROM chip manufacturer and can never be altered. EPROM stands
for erasable, programmable read-only memory. Information stored in these chips can be
erased using ultraviolet light. After erasure, the chip can be reprogrammed. EEPROM
stands for electrically erasable, programmable read-only memory. These chips can be erased
with electrical signals and reprogrammed.

Both EPROMs and EEPROMs usually are used during the initial development phases
of a system. The reason is that any operating system bugs can be corrected by reprogramming
the EPROM and EEPROM. Once the system is developed and all of the bugs are removed,

the EPROMs and EEPROMs are usually replaced with less expensive mask-programmed
ROMs.

Secondary Memory

Secondary memory, sometimes called mass storage, is used to hold programs and data on
a semipermanent basis. The most common type of secondary memory used in a micro-
computer system is the magnetic floppy disk shown in Figure 1-4. The floppy disk in Figure
1-4 gets its name from the fact that it is flexible, rather than rigid, or hard. The disk is
coated with a magnetic material and enclosed within a plastic jacket. When inserted into
a disk drive the disk is spun on the drive at about 300 rpm. A read/write recording head
within the drive reads and writes information on the disk through the access slot, or window,
in the disk jacket.

Notice that there is a small write-protect notch on one side of the disk jacket. When
covered with a small sticker or piece of tape, new information cannot be written, or recorded,
on the disk. This feature is provided so that you can protect the disk from accidental erasure.

When writing programs, you will first enter the program code into the system primary
memory, or RAM. When entering TURBO Pascal programs, you must create a work file
name for the program. This work file name creates an area, or file, on the disk where your
program will be saved. As you enter and work with your program in RAM, you will
periodically save the program on the disk so that it is permanently stored. When you save
the program, the system simply copies the program from RAM and saves it on the disk
under the work file name that you created. This process is illustrated in Figure 1-5a.

Saving a program on disk allows you to retrieve it easily later. To read a program
from a disk, you simply insert the disk in the disk drive and enter the work file name
assigned to the program. This tells the system to read the work file and transfer it into

