Lecture Notes in

Mathematics

S. Kumar G. Laumon U. Stuhler

Vector Bundles on Curves—
New Directions

Cetraro, 1995
Editor: M. S. Narasimhan

53 Springer



S. Kumar G. Laumon U. Stuhler

Vector Bundles on Curves —
New Directions

Lectures given at the 3rd Session of the
Centro Internazionale Matematico Estivo
(C.I.LM.E.) held in Cetraro (Cosenza), Italy,
June 19-27, 1995

Editor: M. S. Narasimhan

Fondazione

C.LM.E.

Springer




Authors Editor

Shrawan Kumar M. S. Narasimhan
Department of Mathematics International Centre
University of North-Carolina for Theoretical Physics
Chapel Hill, NC 27599-3250, USA P.O. Box 586

Giéaiil Latiion 1-34100 Trieste, Italy

Département de Mathématiques
Université de Paris-Sud
Batiment425, F-91405 Orsay Cedex, France

Ulrich Stuhler

Fachbereich Mathematik

Universitat Gottingen

Postfach 3774, D-3400 Gottingen, Germany

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek — CIP-Einheitsaufnahme

Centro Internazionale Matematico Estivo <Firenze>:

Lectures given at the . . . session of the Centro Internazionale Matematico Estivo (CIME) . . . — Berlin;
Heidelberg; New York; London; Paris; Tokyo; Hong Kong: Springer

Friiher Schriftenreihe. — Friiher angezeigt u.d.T.: Centro Internazionale Matematico Estivo: Proceedings of
the . . . session of the Centro Internazionale Matematico Estivo (CIME)

NE: HST 1995,3. Vector bundles on curves. — 1996

Vector bundles on curves: new directions; held in Cetraro (Cosenza), Italy, June 19-27, 1995/S. Kumar . . .
Ed.: M. S. Narasimhan. — Berlin; Heidelberg; New York; Barcelona; Budapest; Hong Kong; London; Milan;
Paris; Santa Clara; Singapore; Tokyo: Springer, 1996

(Lectures given at the . . . session of the Centro Internazionale Matematico Estivo (CIME) . . . ; 1995,3)
(Lecture notes in mathematics; Vol. 1649: Subseries: Fondazione CIME)

ISBN 3-540-62401-5

NE: Kumar, Shrawan; Narasimhan, Madumbai S. [Hrsg.]; 2. GT

Mathematics Subject Classification (1991): Primary: 14F05
Secondary: 11R39, 11G09, 14D20

ISSN 0075-8434
ISBN 3-540-62401-5 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms orin any other way, and storage in databanks. Duplication
of this publication or parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must always be obtained
from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1997
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Typesetting: Camera-ready TgX output by the authors
SPIN: 10520280 46/3142-543210 - Printed on acid-free paper



PREFACE

The Third 1995 C.I.LM.E. Session:
"Vector Bundles on Curves: New Directions" was held in Grand Hotel
San Michele, Cetraro (Cosenza) from 19 to 27 June 1995.

The exciting work of Drinfeld and the recent remarkable insights coming from
Theoretical Physics have opened up new directions in the study of vector
bundles on curves. The purpose of the session was to give a survey of some of
these recent developments.

There were three series of lectures:

1) Kac-Moody Groups, Their Flag Varieties and Moduli Spaces of G-
Bundles, by Shrawan Kumar;

2) Drinfeld Shtukas, by G. Laumon

and

3) Drinfeld Modules and Elliptic Sheaves, by U. Stuhler.

The text of the lectures on the third topic was written by U. Stuhler jointly with
A. Blum.

M.S. Narasimhan
ICTP
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INFINITE GRASSMANNIANS AND
MODULI SPACES OF G-BUNDLES
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Introduction.

These are notes for my eight lectures given at the C.I.LM.E. session on “Vector
bundles on curves. New directions” held at Cetraro (Italy) in June 1995. The
work presented here was done in collaboration with M.S. Narasimhan and A. Ra-
manathan and appeared in [KNR]. These notes differ from [KNR] in that we have
added three appendices (A)-(C) containing basic definitions and results (we need)
on ind-varieties, affine Kac-Moody Lie algebras, the associated groups and their
flag varieties. We also have modified the proof (given in §7) of the basic extension
result (Proposition 6.5), and we hope that it is more transparent than the one given
in [KNR, §7]. We now describe the main result of this note.

Let C be a smooth projective irreducible algebraic curve over C of any genus
and G a connected simply-connected simple affine algebraic group over C. In this
note we elucidate the relationship between

(1) the space of vacua (“conformal blocks”) defined in Conformal Field Theory,
using an integrable highest weight representation of the affine Kac-Moody
algebra associated to G and

(2) the space of regular sections (“generalized theta functions”) of a line bundle
on the moduli space M of semistable principal G-bundles on C.

Fix a point p in C and let @, (resp. i(,,) be the completion of the local ring O,
of C at p (resp. the quotient field of O,). Let G := G(k,) (the k,-rational points of

the algebraic group G) be the loop group of G and let P := G(@p) be the standard
maximal parahoric subgroup of G. Then the generalized flag variety X := G/P is
an inductive limit of projective varieties, in fact, of generalized Schubert varieties.
One has a basic homogeneous line bundle £(x,) on X (cf. §C.6), and the Picard
group Pic(X) is isomorphic to Z which is generated by £(x,) (Proposition C.13).
There is a central extension G of G by the multiplicative group C* (cf. §C.4), which
acts on the line bundle £(x,). By an analogue of the Borel-Weil theorem proved in
the Kac-Moody setting by Kumar (and also by Mathieu), the space H°(X, £(dx,))
of the regular sections of the line bundle £(dx,) :=£(x,)®¢ (for any d > 0) is
canonically isomorphic with the full vector space dual L(C,d)* of the integrable
highest weight (irreducible) module L(C,d) (with central charge d) of the affine
Kac-Moody Lie algebra g (cf. §A.2).

Using the fact that any principal G-bundle on C \ p is trivial (Proposition 1.3),
one sees easily that the set of isomorphism classes of principal G-bundles on C
is in bijective correspondence with the double coset space I'\G/P, where I' :=
Mor(C\ p, G) is the subgroup of G consisting of all the algebraic morphisms C'\ p —
G. Moreover, X parametrizes an algebraic family &/ of principal G-bundles on C
(cf. Proposition 2.8). As an interesting byproduct of this parametrization and
rationality of the generalized Schubert varieties, we obtain that the moduli space
M of semistable principal G-bundles on C is a unirational variety (cf. Corollary
6.3). Now, given a finite dimensional representation V of G, let U(V) be the
family of associated vector bundles on C' parametrized by X. We have then the
determinant line bundle Det(2(V')) on X, defined as the dual of the determinant
of the cohomology of the family (V) of vector bundles on C (cf. §3.7). As
we mentioned above, Pic (X) is freely generated by the homogeneous line bundle



£(x0) on X, in particular, there exists a unique integer my (depending on the
choice of the representation V') such that Det(U(V)) ~ £(mvx,). We determine
this number explicitly in Theorem (5.4), the proof of which makes use of Riemann-
Roch theorem. It is shown that the number my coincides with the Dynkin index of
the representation V. For example, if we take V to be the adjoint representation of
G, then my =2x dual Coxeter number of G (cf. Lemma 5.2 and Remark 5.3). The
number my is also expressed in terms of the induced map at the third homotopy
group level m3(G) — m3(SL(V)) (cf. Corollary 5.6).

The action of " on X via left multiplication lifts to an action on the line bundle
L(myxo) (cf. §2.7). Suggested by Conformal Field Theory, we consider the space
HO(X,£(dmyx,))' of I'-invariant regular sections of the line bundle £(dmyvx.,)
(for any d > 0). This space of invariants is called the space of vacua. More
precisely, in Conformal Field Theory, the space of vacua is defined to be the space
of invariants of the Lie algebra g ® R in L(C, d)*, where R is the ring of regular
functions on the affine curve C'\ p and g is the Lie algebra of the group G. We have
(by Proposition 6.7) [L(C,dmy )*|T = [L(C,dmy)*]®R and, as already mentioned
above, H°(X, £(dmy x,)) ~ L(C,dmy)*. The main result of this note (Theorem
6.6) asserts that (for any d > 0) the space H°(9M,O(V)®?) of regular sections
of the d-th power of the ©-bundle ©(V) (cf. §3.7) on the moduli space M is
isomorphic with the space of vacua [L(C,dmy )*]' = [L(C,dmy )*]9®R. Moreover,
this isomorphism is canonical up to scalar multiples. This is the connection, alluded
to in the beginning of the introduction, between the space of vacua and the space
of generalized theta functions. This result has also independently been obtained
by Faltings [Fa] and in the case of G = SLy by Beauville-Laszlo [BL], both by
different methods.

We make crucial use of a ‘descent’ lemma (cf. Proposition 4.1), and an extension
result (cf. Proposition 6.5) in the proof of Theorem (6.6). The proof of Proposition
(6.5) is given in §7, and relies on the explicit GIT construction of the moduli space
of vector bundles.

Our Theorem (6.6) can be generalized to the situation where the curve C has n
marked points {pi, ..., pn} together with finite dimensional G-modules {V4,...,V,}
attached to them respectively, by bringing in moduli space of parabolic G-bundles
on C.

A purely algebro-geometric study (which does not use loop groups) of generalized
theta fuctions on the moduli space of (parabolic) rank two torsion-free sheaves on a
nodal curve is made by Narasimhan-Ramadas [NRa]. A factorization theorem and
a vanishing theorem for the theta line bundle are proved there. In addition, several
other mathematicians (A. Bertram, S. Bradlow, S. Chang, G. Daskalopoulos, B.
van Geemen, E. Previato, A. Szenes, M. Thaddeus, R. Wentworth, D. Zagier, - -+ )
and physicists have studied the space of generalized theta functions (from different
view points) in the case when G = SL(2), in the last few years.

Even though we have taken the base field to be the field C of complex numbers
throughout the note, all the results of the note hold good over any algebraically
closed field of char 0 (with minor or no modifications in the proofs).

The organization of the note is as follows:
Apart from introducing some notation in §1, we realize the affine flag variety



X as a parameter set for G-bundles. In section (2) we prove that X supports an
algebraic family of G-bundles on the curve C (cf. Proposition 2.8). We also realize
the group I' as an ind-group, calculate its Lie algebra, and prove its splitting in this
section. Section (3) is devoted to recalling some basic definitions and results on the
moduli space of semistable G-bundles, including the definition of the determinant
line bundle and the ©-bundle on the moduli space. We prove a curious result (cf.
Proposition 4.1) on algebraic descent in §4. Section (5) is devoted to identifying the
determinant line bundle on X with a suitable power of the basic homogeneous line
bundle on X. Section (6) contains the statement and the proof of the main result
(Theorem 6.6). Finally in Section (7) we prove the basic extension result (Proposi-
tion 6.5), using Geometric Invariant Theory. Appendix (A) is devoted to recalling
the definition of affine Kac-Moody Lie algebras and its representations. Appendix
(B) is an introduction to ind-varieties and ind-groups. Finally in appendix (C), we
recall the basic theory of affine Kac-Moody groups and their flag varieties.

1. Affine flag variety as parameter set for G-bundles.

(1.1) Notation. Throughout the note we take the field C of complex numbers as
the base field. By a scheme we will mean a scheme over C. Let us fix a smooth
irreducible projective curve C over C, and a point p € C. Let C* denote the open
set C \ p. We also fix an affine algebraic connected simply-connected simple group
G over C.

For any C-algebra A, by G(A) we mean the A-rational points of the algebraic
group G. We fix the following notation to be used throughout the note:

G=Gz = G(kg)v

P =Pz = G(Op), and

I =T'y = G(C[C*)),
where @, is the completion of the local ring Op of C at p, I}, is the quotient
field of 0,, C[C"*] is the ring of regular functions on the affine curve C* (which
can canonically be viewed as a subring of i:,), and T is the triple (G,C,p). We
will freely use the notation and the results from the three appendices throughout
Sections (1)-(7).

We recall the following
(1.2) Definition. Let H be any (not necessarily reductive) affine algebraic group.
By a principal H-bundle (for short H-bundle) on an algebraic variety X, we mean
an algebraic variety E on which H acts algebraically from the right and an H-
equivariant morphism 7 : E — X (where H acts trivially on X), such that = is
isotrivial (i.e. locally trivial in the étale topology).

Let H act algebraically on a quasi-projective variety F' from the left. We can
then form the associated bundle with fiber F, denoted by E(F). Recall that E(F) is
the quotient of E x F under the H-action given by g(e, f) = (eg™*,gf), for g € H,
ec Eand f€eF.

Reduction of structure group of E to a closed algebraic subgroup K C H is, by
definition, a K-bundle Ex such that Ex(H) ~ E, where K acts on H by left



multiplication. Reduction of structure group to K can canonically be thought of
as a section of the associated bundle E(H/K) — X.

Let X = X(H, C) denote the set of isomorphism classes of H-bundles on the base
C, and X, C X denote the subset consisting of those H-bundles on C' which are
algebraically trivial restricted to C*. We recall the following proposition essentially
due to Harder [H;, Satz 3.3 and the remark following it].

(1.3) Proposition. Let H be a connected reductive algebraic group. Then the
structure group of any H-bundle on a smooth affine curve Y can be reduced to the
connected component Z°(H) of the centre Z(H) of H.

In particular, if H as above is semi-simple, then any H-bundle on Y 13 trivial.

The following map is of basic importance for us in this note. This provides a
bridge between the moduli space of G-bundles and the affine (Kac-Moody) flag
variety, where G is as in §1.1.

(1.4) Definition (of the map ¢ : § — X,). Consider the canonical morphisms
11 : Spec(@,) — C and 15 : C* — C. Let us take the trivial G-bundles on both

the schemes Spec (Op) and C*. The fiber product

F := Spec(0,) é c

of 1; and i3 can canonically be identified with Spec (1},). This identification F' =~
Spec (I},) is induced from the natural morphisms

Spec (1},)
/ ~
Spec (Op) k c*
S
F
By an analogue of “glueing”lemma of Grothendieck ([G, §§2.6, 2.7], [BL:]), to
give a G-'pundle on C, it suffices to give an automorphism of the trivial G-bundle
on Spec (kp), i.e., to give an element of G := G(k,). (Observe that since we have a

cover of C by only two schemes, the cocycle condition is vacuously satisfied.) This
is, by definition, the map ¢ : ¢ — A,

(1.5) Proposition. The map ¢ (defined above) factors through the double coset
space to give a bijective map (denoted by)
@:T\G/P - X,.
(Observe that, by Proposition (1.3), X, = X since G is assumed to be connected
and semi-simple.)

Proof. From the above construction, it is clear that for g,¢' € G, ©(g) is isomor-
phic with ©(g') (written ©(a) = «(a’)) if and onlv if there avict ton (T Lo



isomorphisms :
Spec ( A,) x G2 Spec (6,,) x G
N v
Spec (Oy)
and

such that the following diagram is commutative:

o~ L3 ec k "
Spec(k,) x G —15< W), goec (k) x G

(+) G |s

~ 6 k -~
Spec (k) x G ISPl o (k) x G

Any G-bundle isomorphism 6; (resp. 6;) as above is given by an element h € P
(resp. v € I'). In particular, from the commutativity of the above diagram (x),
¢(9) = ¢(g’) if and only if there exist h € P and v € T such that gh = v¢/, i.e.,
~4~1gh = g'. This shows that the map ¢ factors through I'\G/P to give an injective
map @. The surjectivity of @ follows immediately from the definition of X,, and
the fact that any G-bundle on Spec (5,) is trivial. O

(1.6) Remark. G/P should be thought of as a parameter space for G-bundles E
together with a trivialization of E|_. (cf. Proposition 2.8).

2. Affine flag variety parametrizing an algebraic family and realizing T
as an ind-group.

Recall the definition of the group I' C G from §1.1.
(2.1) Lemma. The group I is an ind-group.

Proof.! Embed G «— SLy C My, where My, is the space of N x N matrices over C.
This induces an injective map ¢ : I' < Mor(C*, Mn), where Mor (C*, My) denotes
the set of all the morphisms from C* to My . Take a C—basis {fi, f2, f3,---} of
C[C"*] (the ring of regular functions) such that ordyfn < ordpfn41 for any n > 1,
where ord, fn denotes the order of the pole of f, at p. The set Mor (C*, My) hasa
filtration Morg C -+ C Mor, C ..., where Mor,, is the (finite dimensional) vector

11 thank R. Hammack for some simplification in my original argument.



space of all those morphisms 6 : C* -+ My such that all its matrix entries have

poles of order < n. Set I'y = i~!(Mor,). Any 8 = (6;,;) € Mor, can be written
k(n)

as 0; ; = Zzﬁ,'fk (for some k(n)). We take (zf,]-) as the coordinates on Mor,. It
k=1

is easy to see that I'; < Mor, is given by the vanishing of some polynomials in
(zf‘ ;) » in particular, T's is a closed subvariety of the affine space Mor,. (We put
the reduced structure on I',.) This gives rise to the ind-variety structure on I' as
a closed ind-subvariety of Mor (C*, My). It is easy to see (from the definition of
the ind-variety structure on I') that I in fact is an ind-group. Moreover, this ind-
variety structure on I does not depend upon the particular choice of the embedding

G SLy. O
The following lemma determines the Lie algebra of the ind-group T

(2.2) Lemma. The Lie algebra LieT is isomorphic with g @c R , where g := Lie
G, R := C[C*), and the bracket in g® R is defined as [X®p,Y ®q] = [X,Y]®pq, for
X,Y € g and p,q € R. The isomorphism Liel’ ~ g ® R is obtained by considering
the differential of the evaluation map at each point of C*.

Proof. Choose an embedding G — SLy C My as in the proof of Lemma (2.1).
This gives rise to a closed immersion ¢ : I' < Mor (C*,My). In particular, it
induces an injective map di : T,(I') = Liel' — Tj(Mor) ~ Mor at the Zariski
tangent space level (where I is the identity matrix and Mor = Mor (C*, My)). We
claim that di is a Lie algebra homomorphism, if we endow Mor ~ My(R) with
the standard Lie algebra structure, where My (R) is the space of N x N matrices
over R. To prove this, consider the following commutative diagram (for any fixed

z€C*):

T.) S My(R)

1 {
g=T,(G) — MN ’

where the vertical maps are induced by the evaluation map e, : R — C given by
p — p(z). Since the bottom horizontal map is a Lie algebra homomorphism, and
so are the vertical maps, we obtain that di itself is a Lie algebra homomorphism.
It is further clear, from the above commutative diagram, that the image of di is
contained in g ® R, where g is identified with its image in My.

Next, we prove that the image of di contains at least the set g ® R:

Fix any vector X € g C My such that X is a nilpotent matrix and take p € R,
and define a morphism A’ — T by z — ezp(zX ® p). (Since X is nilpotent, the
image is indeed contained in I'.) It is easy to see that the image of the induced
map (at the tangent space level at 0) is precisely the space C(X ® p). But since the
nilpotent matrices X € g span g, the assertion follows. This completes the proof of
the lemma. O

We prove the following interesting lemma (even though we do not make use of
it).



(2.3) Lemma. Let Y be a connected variety (over C). Then any regular map
Y — C*, which is null-homotopic in the topological category, is a constant.

(Observe that if the singular cohomology H'(Y,Z) = 0, then any continuous
map Y — C* is null-homotopic.)

Proof. Assume, if possible, that there exists a null-homotopic non-constant regular
map A : Y — C*. Since ] is algebraic, there exists a number N > 0 such that the
number of irreducible components of A=!(z) < N, for all z € C*. Now we consider
the N'-sheeted covering mn+ : C* — C*(z + 2V'), for any N’ > N. Since ) is
null-homotopic, there exists a (regular) lift A : Y — C* (cf. [Se;, Proposition 20]),
making the following diagram commutative:

c*

:\/‘ l"N'

Yy — C.
A

Since X is regular and non-constant, by Chevalley’s theorem, Im A (being a con-
structible set) misses only finitely many points of C*. In particular, there exists a
z, € C* (in fact a Zariski-open set of points) such that 7/ (z,) C Im X. But then
the number of irreducible components of A™1(z,) = A™!(751)(20) > N’ > N, a
contradiction to the choice of N. This proves the lemma. O

We will use the following proposition in the proof of assertion (c) contained in
the proof of Theorem (6.6).

(2.4) Proposition. There does not ezist any non-constant regular map A : I’ —

C.

Proof. Fix a Borel subgroup B C G and let U be its unipotent radical. Fix any
g € G. Consider the subgroup Mor(C*, gUg™!) C I consisting of all the regular
maps f : C* = gUg~!. We put the ind-group structure on Mor(C*, gUg™!) similar
to that of " as in the proof of Lemma (2.1). We denote the inclusion (which is a
regular map) by

6 =86, : Mor(C*, gUg™') > T.

Let A : ' = C* be a regular map, and consider the regular map
Aof: Mor(C*,gUg™ ) = C*.

The exponential map induces an isomorphism of the ind-varieties Mor(C*, gUg™!) ~
Mor (C*,n) = n ®c C[C*], where n := Lie U. In particular, Mor(C*, gUg™?)
is an inductive limit of (finite dimensional) affine spaces and hence the regular
map Ao 0 is constant. So the derivative map at the tangent level d() o 6) :
T.( Mor (C*,gUg™!)) = Tx(¢)(C*) is the zero map.



As seems to be well known, the group I is connected. I do not know to whom
this result should be attributed, but there is an interesting proof of this due to
Drinfeld.

Now assume (if possible) that ) is non-constant. Then (using connectedness of
I') there exists a positive integer n and a point h € ', such that the derivative map
d(Ar,) : Th(Tn) = Tx(n)(C*) is non-zero (where I'y, is the filtration of I as in the
proof of Lemma 2.1). In particular, the derivative map (dA)s : Th(T') = Ty (C*)
is non-zero. By translating the map A, if necessary, we can assume that h = e. But
since T.( Mor (C*,gUg™?)) = gng~! ®cC[C*] (by the same proof as of Lemma 2.2),
we obtain that (d)). vanishes on the sum s := 37  ;(gng™") ®c C[C*]. Further
> gng~! = g and hence T.(I') = s (by Lemma 2.2). In particular, (d\). vanishes
9€G
on the whole tangent space T(I'), a contradiction! This proves that the map ) is

constant on I, proving the proposition. O

Remark. Simple-connectedness of I' of course will imply the above proposition (in
view of Lemma 2.3). In fact, it is very likely that the space I' is homotopically
equivalent to the corresponding space I'iop consisting of all the continuous maps
C* — G under the compact-open topology. This of course will give the connected
and simple-connectedness of I', by using a result of Thom [GK, Theorem 5.10]. A
student of mine R. Hammack is trying to give a proof of this homotopy equivalence
by using some ideas similar to [PS, Proof of Proposition 8.11.6], albeit in the al-
gebraic category, together with a variant of a result of Hurtubise [Hur, Theorem
1.3).

Recall from Proposition (C.12) that X = X;.p = Xja: is a projective ind-variety.
(2.5) Lemma. The left multiplication of ' on X is @ morphism é6:T x X — X.

Proof. We will consider the X)a¢ description of X (cf. §C.9). It is clear that for any
non-negative integers m,n , §(Fn X X;n) € Xg(n,m), for some k(n,m). Now from
the explicit description of the variety structures (on I' and X, ), it is easy to check
that 8p m = Jll‘n xXm is a morphism.

This proves the lemma. 0O

Restrict the central extension (1) of §(C.4) to get a central extension

(1) 15C 5T 5T o1,

where I' is by definition 7~1(T).

(2.6) Splitting of the central extension over I' (SLy case). The basic ref-

erence for this subsection is [PS, §7.7]. We first consider the case of G = SLy and

follow the same notation as in §(C.7). In particular, G° := SLn(C((2))), P° =

SLn(C[[t]), X° =G°/P°, V = CN'I V((t)) = V ®&c C((t)), and L, = V ®c C[[t]].

Let GL(W) denote the group of C-linear isomorphisms of a vector space W.
Define the subgroup H of G° x GL(L,) by

H ={(9,E) € G° x GL(L,) : g* — E : L, = L, has finite rank},
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+
where g = (g* :) with respect to the decomposition

(1) V(t) =L.a(V @t“CIt“])-

Let /' C H be the normal subgroup defined as N' = {(1,E) € H : det E = 1}.
(Observe that since I — E : L, = L, has finite rank, i.e., has finite dimensional
image, the determinant of E is well defined.)

It is not difficult to see that the projection on the first factor gives rise to a
central extension:

(2) 159C 5>H/N G 1.

We now give an alternative description of the line bundle £(x,) on X° (cf. §C.6):

Recall the definition of the set F and the map 8 : X° — F from §(C.7). For
any W € F, define Sw as the set of C-linear isomorphisms 6 : L, - W such that
760 —I: L, = L, has finite rank, where m; : V((t)) = L, is the projection on the
L, factor with respect to the decomposition (1).

Define the vector space Vw over C with basis parametrized by the set Sw, i.e.,
an element of Vw is of the form 296 Sw z¢6, where all but finitely many z¢ € C are
zero. Let V}y, C Vw be the subspace spanned by {6 — det(6'~26)8'}4,0:cs,, and let
Lw = Vw/Vly. (Note that 6' =16 — I has finite rank as an endomorphism of L, and
hence det(6 ~8) is well defined.) Then Ly is a 1-dimensional vector space. Now
define the line bundle £ 5 F, where n~ (W) = Lw for any W € F. As proved in
[PS, §7.7], the line bundle £ is an algebraic line bundle on F (with respect to the
ind-variety structure on F as in §C.7). It is easy to see that £, is the restriction
of the basic (negative ample) line bundle on Gr(N,2N) under the identification
Fi1 3 Gr(N,2N)*4 (cf. §C.7). Let £, be the pull-back of the line bundle £ to
X° via the isomorphism  : X° 5 F. In view of Proposition (C.13), it is easy to
see that the dual line bundle £} is isomorphic with the line bundle £(x,).

Now we define an action a of the group #/MN on £ as follows: For (g,E) € H,
define

a(gv E)[Z, le = [z,gGE*l]gw,

where for z € C and 8 € Sw, [z, 6w denotes the equivalence class of zf. This action
factors through an action of H/N and moreover for any fixed (g, E) € H, a(g, E)
is an algebraic automorphism of the line bundle £ (and hence of £,) inducing the
map L, on the base (cf. §C.6). Using this, the group H/N can canonically be
identified with the Mumford group Aut(£,) defined in §(C.6). In particular, the
central extension H/N is isomorphic with .

Finally we construct a splitting of H/AN over I as follows:

Choose an element g, € G° such that the associated rank-N vector bundle @(g,)
on C twisted by O((g—1)p), E := 4(9o)((g—1)p) (where g is the genus of the curve
C) has all its cohomology 0. Then considering the local cohomology sequence (for
the curve C with support in p) with coefficients in the vector bundle E, we deduce
that

(3) V(1) = Lot 9. (V ®c C[C*))
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where V ®c C[C*] is identified as a subspace of V((t)) by choosing a parameter ¢
around p € C.
We first construct the splitting of H/A over T'y, := g;'T'g,. Define the group

; +
homomorphism o4, : Ty, = H by 04, (7) = (7,7 ), where v = 7* S with

respect to the decomposition (3). (Observe that Iy, keeps the second factor stable
and hence vt' € GL(L,).) The group homomorphism 7,, : Ty, = H/N (where
G,, is the map o,, followed by the canonical map H — H/N) splits the central
extension (2) over I'y,. Now take any preimage g, of g, in H/N, and define the
splitting 7 : T' — H/N (v = §,04,(9;'790)9; ')

Since H/N acts on the line bundle £,, so is I' (via the homomorphism 7). It
can be easily seen that the action I' x £, — £, is a morphism of ind-varieties.
Moreover, let @ : T' = H/N be another splitting of I' such that the induced action
I' x £, = L, is again a morphism of ind-varieties. Then we claim that 7 = 7 :
There is a group homomorphism a : I' = C* such that (cf.(2)) @ = ag. Further
a is a morphism of ind-varieties (since the action of I' on £, in both the cases is
regular). But then « is identically 1 (cf. Proposition 2.4, see also Remark 6.8(c)).
This proves the uniqueness of such a splitting.

Since the line bundle £, is isomorphic with the homogeneous line bundle £(—x,),
it is easy to see that the group I’ acts morphically on the representation L(C, 1)
and hence on any L(C, d) (for d > 0, where L(C, d) is the irreducible representation
of the affine Lie algebra siy with central charge d, cf. §A.2).

(2.7) Splitting of the central extension over I' (general case). We now
come to the case of general G as in §1.1. Take a finite dimensional representation
V of G such that the group homomorphism v : G — SL(V) has finite kernel, and
consider the induced map at the Lie algebra level dy : g — sl(V), where sl(V) is
the Lie algebra of trace 0 endomorphisms of V. We denote the Lie algebra si(V)
by g°. The Lie algebra homomorphism dvy induces a Lie algebra homomorphism
7 : § — §° defined by (cf. §A.1)

X®p+— (dy(X))®p, and K » myK°

for X € g and p € C[t*']; where K (resp. K°) is the canonical central element of
g (resp. §°), and my is the Dynkin index of the representation V (cf. §5.1).

To distinguish the objects corresponding to SL(V') from that of G, we denote the
former by a superscript 0. Let us consider the irreducible representation L°(C, 1)
for the Lie algebra g° with central charge 1 and restrict it to the Lie algebra g via
the homomorphism 4. It can be seen that the g-submodule of L°(C, 1) generated
by the highest weight vector v, is isomorphic with L(C,my ).

The representation « also gives rise to a morphism of the corresponding affine
flag varieties 4 : X — X°, and a morphism of ind-groups I' — I'°. It is easy to see
that the basic homogeneous line bundle £°(x,) on X° pulls-back to the line bundle
£(mvx,) on X. In particular, the group I' acts morphically on the line bundles
£(dmyx,) (for any d € Z) and hence I' also acts morphically on the representation
space L(C,dmy ).

We come now to the following proposition, asserting that X = G/P supports an
algebraic family.
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(2.8) Proposition. (a) There is an algebraic G-bundle U - C x X such that
for any z € X the G-bundle U, := Ujcx, 13 isomorphic with p(z) (where ¢ is the
map of §1.4). Moreover, the bundle Ujc. xx comes equipped with a trivialization
a: €3 U|c-xx, where € is the trivial G-bundle on C* x X.

(b) Let £ - C x Y be an algebraic family of G-bundles (parametrized by an
algebraic variety Y ), such that € is trivial over C* XY and also over (Spec @p) xY.
Then, if we choose a trivialization § : € = &|c-xy, we get a Schubert variety
X and a unique morphism f : Y — X, together with a G-bundle morphism
f : &€ = Ucxx, inducing the map Ix f at the base such that foB =aoh, where ¢
13 the trivial bundle on C* x Y and 8 is the canonical G-bundle morphism ¢ — ¢
inducing the map IXf at the base.

Proof. Let R be a C-algebra and let Y := Spec R be the corresponding scheme.
Suppose € -+ C x Y is a G-bundle with trivializations 8 of £ over C* x Y and 7 of
&€ over (Spec @,) x Y. Note that the fiber product (Spec @, xY)xexy (C*xY)is
canonically isomorphic with (Spec i{,) x Y (cf. §1.4). Therefore the trivializations
B and T give rise to an element 77! € G(I}, ® R). Conversely, given an element
g € G(kp, ® R), we can construct the family £ - C x Y by taking the trivial
bundles on C* x Y and (Spec &,) x Y and glueing them via the element g (cf.
§1.4). Moreover, if g; and g, are two elements of G(I(p ® R) such that g, = g1h
with b € G(O, ® R), then h induces a canonical isomorphism of the bundles
corresponding to g; and g;. All these assertions are easily verified.

Choose a local parameter ¢t around p € C. Let eve : G(C[t7!]) = G be the
group homomorphism induced from the algebra homomorphism C[t~!] — C taking

115 0, and let N~ := ker (eve). Then the image U~ of N~ in X under the

map ¢:: N~ — X | taking g — gP , is an open subset of X. To construct a family
of G—bundles on X, we first construct a family on the open sets wU~ C X, for
w € Mor; (C*, T) as follows (cf. proof of Lemma C.10 for the notation Mor; (C*, T)):

From the discussion in the first paragraph, it suffices to construct an element
8, € G(k, ® ClwU~]) such that, for every wz € wU~, the element 8, evaluated
at wz (i.e. the image of 8, under the evaluation map G(k, ® ClwU~]) = G(I},) at
wz) satisfies 8, (wz) = wi~!(z) mod P. But, by definition, N~ C G(C[t~!]) and
hence we get a tautological map 8 : (P}(C)\0) x N~ — G. It is easy to see that
0 is a morphism under the ind-variety structure on N~. (Observe that U~ being
an open subset of X),¢ has an ind-variety structure and hence N~ acquires an ind-
variety structure via the bijection i.) Think of C* = P*(C)\{0, 0} and define .
PY(C)\{0, 00} x wU~ — G by 8,,(z,wi(g)) = w(z)8(z,g), for z € PI(C)\{O oo} and

g € N—. The morphism 8,, of course gives rise to an element ,, € G(k QCwU]),
a.nd hence a G-bundleon C x wU ™.

To prove that the bundles on C x wU ™ got from the elements 6,, patch together
to give a bundle on C x X, it suffices to show that the map

8,8, : PY(C)\{0,00} x (WU~ NvU~) =» G

__1_

extends to a morphism (again denoted by) 8, 8,, : P}(C)\{oo} x (WU~ NoU~) =
G : But for any fixed z € wU~ N vU~, the map 8, 8, : PX(C)\{0,00} x z = G in



