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Preface

In Numerical Analysis of Partial Differential Equations we present an account of the
theory and methodology of the numerical solution of partial differential equations.
This important subject forms much of the core of what is known more generally as
“scientific computing,” and it is one of the main areas that spawned the development
of today’s multimillion-dollar supercomputers.

Scientific computing was defined by Garrett Birkhoff! in 1971 as “the art of
utilizing physical intuition, mathematical theorems and algorithms, and modern com-
puter technology to construct and explore realistic models of problems arising in the
natural sciences and engineering.” In this spirit, our goal is to present some problems
from these disciplines that involve partial differential equations, discuss algorithms
for their numerical solution, and provide sufficient theory for an intelligent analysis
of such algorithms.

We have attempted to avoid the “recipe format” in which numerical algorithms
are given with little or no theoretical justification. At the same time, it is not our
intention to sacrifice practicality on the altar of abstract analysis. Thus, in this text-
book we hope to strike a middle ground and provide a development of material that
is a balance between finite difference and finite element methods, has both a practical

' G. Birkhofl, The Numerical Solution of Elliptic Equations, SITAM, Philadelphia, 1971.
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and an analytic nature, and contains basic theoretical results at a level that is under-
standable to beginning graduate students in engineering and the sciences.

This book is divided into two parts. Part I, A Course in the Numerical Solu-
tion of Partial Differential Equations, is self-contained and is suitable for a one-term
(40 to 45 one-hour lectures) introductory graduate course on the subject. This ma-
terial treats stationary and evolutionary partial differential equations. Numerical
algorithms for the evolution equations are based on finite difference approximations,
whereas those for stationary equations are developed via the finite element method.
In this way we cover the two most popular and successful methodologies in use
today. Part II, Some Additional Topics, contains subject matter that may be used
to supplement or replace material from Part 1. The two-part structure is intended to
give the text a modular format and allow additional or alternate chapters from Part
II to be “snapped” into Part 1. The price of this flexibility is a certain amount of
redundancy, but we hope, this has been minimized. We have endeavored to keep
Part II largely independent of Part I. However, the material on finite elements in
Chapters 8 and 9 should be preceded by a reading of Section 1 of Chapter 5, and
Chapter 6.

The chapters include explanatory examples in the main body of the text as well
as sets of exercises. There are traditional pencil-and-paper problems that test the
understanding of the material developed in the chapter. In addition, there are Com-
puter Exercises that require the reader to develop computer programs and/or use
software available from other sources such as mathematical software libraries. Notes
and Remarks sections appear at the ends of chapters to provide historical comments
and additional references.

We have followed a standard method of referencing key items such as theorems,
tables, examples, and equations. They are ordered by chapter, section, and their order
of occurrence. For numbering purposes no distinction is made among lemmas, theo-
rems, and corollaries. Thus in Chapter 5, Section 2, the fourth equation is numbered
(5.2.4). Similarly, Theorem 5.2.1 is the first theorem (lemma or corollary) in Section
2 of Chapter 5. Notes and remarks are numbered according to their relevancy to a
specific section.

Any attempt to treat a subject as large as the numerical solution of partial dif-
ferential equations in a single work necessarily entails the omission of many interesting
and relevant subjects. In this respect, we have consciously decided not to include
extensive material on the solution of the algebraic equation systems arising from
finite difference and finite element algorithms. However, Section 3 of Chapter 10 does
contain a brief survey of such methods, and numerical methods for the solution of
general linear and nonlinear equation systems may be found, for instance, in Stewart
[1973] and Ortega and Rheinboldt [1970], respectively. Other topics for which the
diligent reader will search in vain include finite element methods for hyperbolic equa-
tions, collocation methods, eigenvalue problems, and boundary elements, among
others.

This book is an outgrowth of lecture notes developed by the authors over the
years for courses on the subject at the University of Pittsburgh. It is intended for



Preface XV

first-year graduate students in the sciences and engineering. Some material has also
been used with success at the senior undergraduate level. Prerequisites include courses
in advanced calculus, linear algebra and matrix theory, and differential equations.
During the course of writing this book, we have benefited from the suggestions
and advice of many people. In this respect, we wish to mention our colleagues Charles
Cullen, Vincent Ervin, Donald French, William Layton, Walter Pilant, and Patrick
Rabier. We also acknowledge the Math 307B students, especially Monica Brodzik,
Yiping Huang, and Victoria Radel, who participated in the debugging of preliminary
versions of the text. We appreciate the comments of the following reviewers: Richard
Falk, Rutgers University; Bruce Kellogg, University of Maryland; Robert J. Krueger,
Iowa State University; William Layton, University of Pittsburgh; J. Tinsley Oden,
The University of Texas at Austin; Dennis Ryan, Wright State University; and Olof
Widlund, New York University. Finally, the authors thank Catherine Morrow,
administrative assistant, [CMA, for her skillful assistance in the preparation of the
manuscript, and Monica Brodzik for painstakingly reviewing the galleys.

Charles A. Hall
Thomas A. Porsching
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PART |

A COURSE IN THE NUMERICAL SOLUTION
OF PARTIAL DIFFERENTIAL EQUATIONS

Numerical Discretization:
Finite Differences
and Finite Elements

Although partial differential equations are used to describe many of the physical
phenomena of science and engineering, few yield to closed-form solution. Numerical
methods that have been developed to approximate solutions of partial differential
equations can, for the most part, be grouped into two broad classes: finite difference
methods and finite element methods. Our purpose in this book is to familiarize the
reader with both classes of methods, to highlight their advantages and shortcomings,
and above all, to present techniques that can be used for their analysis.

1.1 A MODEL PROBLEM

In this chapter we provide a description of both the finite difference and finite element
methods applied to a simple transient convection—diffusion equation in one spatial
dimension. This serves as an introduction to these methods and illustrates some of
the computational pitfalls encountered in their implementation. Such pitfalls provide
a partial justification for the need to analyze numerical methods.

Our model initial -boundary value problem is the following: Find u(x, t) such

that
u ou 0%u
— +v——K- 5=0, O0<x<l1, t>0 (1.1.1)
ot 0x ox

1



2 Chap. 1 Numerical Discretization: Finite Differences and Finite Elements

subject to the initial condition
u(x, 0) = 0, 0<x<, (1.1.2)
and boundary conditions
w0,0)=0 and wu(l,)=1, t>0. (1.1.3)

We assume that the constants v > 0 and K > 0 are specified. The variable u can be
thought of as the temperature of a fluid moving at a velocity, v, through a thin tube
occupying the interval 0 < x < 1. The temperature is forced to be 0 at the inlet (x = 0)
and 1 at the outlet (x = 1) (see also the Notes and Remarks for Section 2.3). The
constant K is called the thermal diffusivity of the fluid. The fluid is initially (t = 0)
at a temperature of 0. We seek the temperature u(x, t) at each position x in the tube
and for each subsequent time .

1.2 FINITE DIFFERENCE METHODS

An elementary approach to finite difference methods is provided by Taylor’s
theorem, which we state as follows:

Let ¢ € C""'[a, b], where C"" '[a, b] denotes the class of functions that are n + 1 times
continuously differentiable on the interval [a, b]. Then there exists a number &, a < & < b,
such that

n ¢(l’)(a)
$b)= Y

=0 i!

(b —a)' + R,

where

_ Qb —art!

R,
(n+ 1)!

From this theorem it is easy to justify the following three approximations to
d¢/dx(a):
Pla + h) — Pla)

1. Forward difference:

h bl
_ —h
2. Backward difference: M_)’
_ —h
3. Centered difference: @ h)2h dla—h)

where h is a positive increment. Indeed, if ¢ is sufficiently smooth, then (1) and (2)
approximate d¢/dx(a) with an error that is O(h) as h — 0, while (3) approximates
d¢/dx(a) with an error that is O(h?) as h — 0 (see Exercises 1.1 and 1.2). We say that
(1) or (2) is a first-order, and (3) is a second-order, approximation to d¢/dx.



Sec. 1.2 Finite Difference Methods 3

The second derivative d?¢/dx? can be approximated similarly using the formula
Pla + h) — 2¢(a) + pla — h)

h? ’
which is also second order as h — 0. These approximations are sufficient for our pur-
poses, although it is worth mentioning that higher-order finite difference formulas can

be derived as well as finite difference approximations of higher-ordered derivatives.
If L, is a finite difference approximation to a differential operator L and

(L, — L)[¢](@ -0 as h—0,

4. (Second) centered difference:

then L,[¢] is said to be a consistent finite difference approximation to L[¢] at a.
For example,

h) —
FORLALELD

is a consistent approximation to L[¢] = d¢/dx at a.

Finite difference methods for solving initial-boundary value problems such as
(1.1.1)—(1.1.3) determine approximations at a finite number of points in the domain
and involve four basic steps:

1. Subdivide the domain, for example by the uniform mesh 0= x, < x, - <
xy = 1, where the mesh points are x; = j Ax and the mesh gauge is Ax = 1/N.

2. Approximate the differential equation at each mesh point x; by replacing deriva-
tives by appropriately chosen finite difference approximations.

3. Impose the boundary and initial conditions on the system generated in step 2.

4. Solve the finite difference equations generated in steps 2 and 3.

Hence we replace a differential equation and any auxiliary conditions by a
system of (in this case) linear algebraic equations. The solution of the latter constitutes
an approximation at mesh points to the solution of the former.

We now apply the finite difference method to the model convection—diffusion
problem given above. There are choices to be made for the temporal and spatial
discretizations, and we discuss each separately.

1.2.1 Spatial Discretization
Assume for the moment that u does not depend on time ¢ (i.e., du/dt = 0). The result

is the steady-state boundary value problem'

{uux—Kuxx=0, 0O<x<L=1

wo0)=0, u(l)=1. (1.2.1)

! Here we use subscript notation for partial differentiation. Thus u, = du/x and u,, = é%u/dx>.
This is a practice we shall continue to employ whenever it is convenient.
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One can verify that the solution of this boundary value problem is

I == g%

1 —eR’

u(x) = (1.2.2)

where R = vL/K is called the Peéclet number.
If the “standard” centered difference approximations are used, we obtain the
second-order finite difference equations

Uj+l_Uj71 U-,1—2U~+U~+1 .
—K J J J — <j< _ .
A e 0, 1<j<N—1, (123

where U; ~ u(x;). This set of difference equations can be solved in closed form as
follows. Let P = R Ax/2. Then (1.2.3) can be rewritten as

—(P+ 1)U, , +2U;+(P—1U,;,, =0, 1<j<N-—1,

v

where U, = 0 and Uy = 1. Assume that U; = r/ for some nonzero number r. Sub-
stituting, we obtain the auxiliary equation

[(1 — Py? —2r + (P + ]! =0,

from which it follows that r = 1 or r = (1 + P)/(1 — P). If A and B are arbitrary con-
stants, we see that
J
Uj=A+B<1+P>, 0<j<N,
l1—P
is also a solution. The boundary conditions then determine A and B and, for example,
the closed-form solution of (1.2.3) is
1 -7/
Visioz
where Z = (2 + RAx)/(2 — R Ax). We note in passing that Z is the (1, 1)-Padé second-
order rational approximation to e®4* [cf. (1.2.2) and (1.2.4)]. The reader is referred
to the Notes and Remarks section for a definition of Padé approximants.
Unfortunately, if Ax > 2/R, then Z is negative and U; oscillates as j ranges
from 1 to N — 1. For example, R = 50, N = 10, and Ax = 0.1 yields Z = —7/3 and
Uy ~ —0.43 (see Figure 1.2.1). However, the true solution u(x) is positive, monotone,
and ranges from 0 to 1. Of course, if Ax is chosen to be less than 0.04, then Z is
positive and monotone, and we obtain much better agreement with the true solution.
For more complicated problems in which v and R are position dependent, or for
multidimensional problems, it is not easy to predict the size of mesh that will prevent
oscillations. Also, this mesh size may be prohibitively small from a computational
efficiency standpoint.
A popular means of avoiding this aphysical oscillatory behavior is through the
use of upwind differencing, in which (1.2.1) is discretized as

0<j<N, (1.2.4)

E_ W R ) )
L‘Uj U; —KU’_' 2U:+U1+1=0, 1<j<N-—1, (1.2.5)
Ax Ax~




