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PREFACE

The study of chaotic phenomena in deterministic nonlinear dynamical systems
has attracted much attention over the last fifteen years. For the applied scientist,
this study poses three fundamental questions. First, and most simply, what is meant
by the term “chaos”? Second, by what mechanisms does chaos occur, and third,
how can one predict when it will occur in a specific dynamical system? This book

begins the development of a program that will answer these questions.

I have attempted to make the book as self-contained as possible, and thus have
included some introductory material in Chapter One. The reader will find much
new material in the remaining chapters. In particular, in Chapter Two, the tech-
niques of Conley and Moser (Moser [1973]) and Afraimovich, Bykov, and Silnikov
[1983] for proving that an invertible map has a hyperbolic, chaotic invariant Cantor
set are generalized to arbitrary (finite) dimensions and to subshifts of finite type.
Similar techniques are developed for the nonhyperbolic case. These nonhyperbolic
techniques allow one to demonstrate the existence of a chaotic invariant set having
the structure of the Cartesian product of a Cantor set with a surface or a “Cantor
set of surfaces”. In Chapter Three the nonhyperbolic techniques are applied to the
study of the orbit structure near orbits homoclinic to normally hyperbolic invariant

tori.

In Chapter Four,I develop a class of global perturbation techniques that enable
one to detect orbits homoclinic or heteroclinic to hyperbolic fixed points, hyperbolic
periodic orbits, and normally hyperbolic invariant tori in a large class of systems.
The methods developed in Chapter Four are similar in spirit to a technique origi-

nally developed by Melnikov [1963] for periodically forced, two-dimensional systems;
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however, they are much more general in that they are applicable to arbitrary (but
finite) dimensional systems and allow for slowly varying parameters and quasiperi-
odic excitation. This general theory will hopefully be of interest to the applied
scientist, since it allows one to give a criterion for chaotic dynamics in terms of the
system parameters. Moreover, the methods apply in arbitrary dimensions, where
much work remains to be done in chaos and nonlinear dynamics.

In this book I do not deal with the question of the existence of strange attrac-
tors. Indeed, this remains a major outstanding problem in the subject. However,
this book does provide useful techniques for studying strange attractors, in that
the first step in proving that a system possesses a chaotic attracting set is to prove
that it possesses chaotic dynamics and then to show that the dynamics are con-
tained in an attracting set that has no stable “regular” motions. One cannot deny
that chaotic Cantor sets can radically influence the dynamics of a system; however,
the extent and nature of this influence needs to be studied. This will require the
development of new ideas and techniques.

Over the past two years many people have offered much encouragement and
help in this project, and I take great pleasure in thanking them now.

Phil Holmes and Jerry Marsden gave me the initial encouragement to get
started and criticized several early versions of the manuscript.

Steve Schecter provided extremely detailed criticisms of early versions of the
manuscript which prevented many errors.

Steve Shaw read and commented on all of the manuscript.

Pat Sethna listened patiently to my explanations of various parts of the book
and helped me considerably in clarifying my thoughts and presentation style.

John Allen and Roger Samelson called my attention to a crucial error in some
earlier work.

Darryl Holm, Daniel David, and Mike Tratnik listened to several lengthy ex-
planations of material in Chapters Three and Four and pointed out several errors
in the manuscript.

Much of the material in Chapters Three and Four was first tried out in graduate
applied math courses at Caltech. I am grateful to the students in those courses for
enduring many obscure lectures and offering useful suggestions.

During the past two years Donna Gabai and Jan Patterson worked tirelessly

on the layout and typing of this manuscript. They unselfishly gave of their time
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(often evenings and weekends) so that various deadlines could be met. Their skill
and help made the completion of this book imimensely easier.

I would also like to acknowledge the artists who drew the figures for this book
and pleasantly tolerated my many requests for revisions. The figures for Chapter
One were done by Betty Wood, and those for Chapter Four by Cecilia Lin. Peggy
Firth, Pat Marble, and Bob Turring of the Caltech Graphic Arts Facilities and Joe
Pierro, Haydee Pierro, Melissa Loftis, Gary Hatt, Marcos Prado, Bill Contado, Abe
Won, and Stacy Quinet of Imperial Drafting Inc. drew the figures for Chapters
Two and Three.

Finally, Meredith Allen gave indispensable advice and editorial assistance

throughout this project.
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CHAPTER 1
Introduction: Background for Ordinary
Differential Equations and Dynamical Systems

The purpose of this first chapter is to review and develop the necessary concepts
from the theory of ordinary differential equations and dynamical systems which we
will need for the remainder of the book. We will begin with some results from
classical ordinary differential equations theory such as existence and uniqueness of
solutions, dependence of solutions on initial conditions and parameters, and various
concepts of stability. We will then discuss more modern ideas such as generic-
ity, structural stability, bifurcations, and Poincaré maps. Standard references for
the theory of ordinary differential equations are Coddington and Levinson [1955],
Hale [1980], and Hartman [1964]. We will take a more global, geometric point of
view of the theory; some references which share this viewpoint are Arnold [1973],
Guckenheimer and Holmes [1983], Hirsch and Smale [1974], and Palis and deMelo
[1982].

1.1. The Structure of Solutions of Ordinary Differential
Equations

In this book we will regard an ordinary differential equation as a system of equations

having the following form
i=f(z,t), (zt) e R® xR} (1.1.1)

where f: U — R"™ with U an open set in R" x R! and # = dz/dt. The space
of dependent variables is often referred to as the phase or state space of the system

(1.1.1). By a solution of (1.1.1) we will mean a map

¢: I >R (1.1.2)
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where I is some interval in IR such that

$(8) = f ((8),1) - (1.1.3)

Thus, geometrically (1.1.1) can be viewed as defining a vector at every point in U,
and a solution of (1.1.1) is a curve in R™ whose tangent or velocity vector at each
point is given by f(z,t) evaluated at the specific point. For this reason (1.1.1) is
often referred to as a vector field.

Now, the existence of solutions of (1.1.1) is certainly not obvious and evidently
must rely in some way on the properties of f, so now we want to give some classical

results concerning existence of solutions of (1.1.1) and their properties.

1.1la. Existence and Uniqueness of Solutions

Suppose that f is C” in U (note: by CT, r > 1, we mean that f has r derivatives
which are continuous at each point of U; C 0 means that f is continuous at each
point of U) and for some €y, €3 >0 let I; = {teR]tqg—e; <t <ty+e;} and
Io={teR| tg— €3 <t <ty+eg}; then we have the following theorem.

Theorem 1.1.1. Let (zg,tg) be a point in U. Then for €| sufficiently small there
exists a solution of (1.1.1), ¢q1: Iy — R", satisfying ¢1(tg) = zg. Moreover, if
fisClinU, r > 1, and ¢g: Is — R"™ is also a solution of (1.1.1) satisfying
$a(to) =zo, then ¢1(t) = ¢o(t) forall te Iz ={tc R | tg—€3 <t <
to+ €3} where €3 = min{ey, e3}.

PROOF: See Arnold [1973] or Hale [1980]. O
We make the following remarks concerning Theorem 1.1.1.

1) For a solution of (1.1.1) to exist, only continuity of f is required; however, in
this case the solution passing through a given point in U may not be unique
(see Hale [1980] for an example). If f is at least C1 in U, then there is only
one solution passing through any given point of U (note: for uniqueness of
solutions one actually only needs f to be Lipschitz in the = variable uniformly
in ¢, see Hale [1980] for the proof). The degree of differentiability of the vector
field will not be a major concern to us in this book since all of the examples

we consider will be infinitely differentiable.
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2) The differentiability of solutions with respect to t was not explicitly considered
in the theorem, although evidently they must be at least C'T since f is C". This
result will be stated shortly.

3) Notation: In denoting the solutions of (1.1.1) it may be useful to note the
dependence on initial conditions explicitly. For ¢, a solution of (1.1.1) passing

through the point z = zg at t =19, the notation would be
¢(t’t0a50) with ¢(t0at0a$0) = - (1'1'4)

In some cases, the initial time is always understood to be a specific value (often
to = 0); in this case, the explicit dependence on the initial time is omitted and

the solution is written as

(ﬁ(t, xo) with ¢(t0, Io) =zp. (1.1.5)

1.1b. Dependence on Initial Conditions and Parameters

In the computation of stability properties of solutions and in the construction of
Poincaré maps (see Section 1.6) the differentiability of solutions with respect to

initial conditions is very important.

Theorem 1.1.2. If f(z,t) is CT in U, then the solution of 1.1.1, &(t,tp,xq)
(zg,to) € U, is a CT function of t, tg and zg.

PROOF: See Arnold [1973] or Hale [1980]. O

Theorem 1.1.2 justifies the procedure of computing the Taylor series expansion
of a solution of (1.1.1) about a given initial condition. This enables one to determine
the nature of solutions near a particular solution. Often the linear term in such an
expansion is sufficient for determining many of the local properties near a particular
solution (e.g., stability). The following theorem gives an equation which the first

derivative of the solution with respect to g must obey.

Theorem 1.1.3. Suppose f(z,t) isC", r > 1,in U and let ¢(t, tg, xp), (zo,t0) €
U, be a solution of (1.1.1). Then the n X n matrix Dgy¢ is the solution of the

following linear ordinary differential equation

7 =Dgf (6(t),t) 2,  Z(to) =1id, (1.1.6)
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where Z is an n X n matrix and id denotes the n X n identity matrix.
PROOF: See Arnold [1973], Hale [1980], or Irwin [1980]. O

Equation (1.1.6) is often referred to as the first variational equation. We remark
that it is possible to find linear ordinary differential equations which the higher order
derivatives of solutions with respect to the initial conditions must obey; however,
we will not need these in this book.

Now suppose that equation (1.1.1) depends on parameters
i=f(z,t;¢), (2.t e R® x R! x R? (1.1.7)

where f:U — R™ with U an open set in R"™ x R! x RP. We have the following

theorem.

Theorem 1.1.4. Suppose f(z,t;¢) is CT in U. Then the solution of (1.1.7),
#(t,tg, x0.€) {zo,to,€) € U, is a CT function of e.

PROOF: See Arnold [1973] or Hale [1980]. O

In many applications it is useful to seek Taylor series expansions in € of solu-
tions of (1.1.7) (e.g., in perturbation theory and bifurcation theory). Analogous to
Theorem 1.1.3, the following theorem gives an ordinary differential equation which

the first derivative of a solution of (1.1.7) with respect to ¢ must obey.

Theorem 1.1.5. Suppose f(z,t,e) is C7, r > 1, in U and let ¢(t,tg,zp,€),
(zgo,t0,€) € U, be a solution of (1.1.7). Then the n x p matrix D¢ satisfies the

following linear ordinary differential equation
Z = Dgf (6(t),t; € Z+ Def (B(t),t;€),  z(to) =0, (1.1.8)

where Z is a n X p matrix and 0 represents the n X p matrix of zeros.

PROOF: See Hale [1980]. O

1.1c. Continuation of Solutions

Theorem 1.1.1 gave sufficient conditions for the existence of solutions of (1.1.1) but
only on a sufficiently small time interval. We will now give a theorem which justifies

the extension of this time interval, but first we need the following definition.
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Definition 1.1.1. Let ¢ be a solution of (1.1.1) defined on the interval Iy, and
let ¢5 be a solution of (1.1.1) defined on the interval Is. We say that ¢g is a
continuation of ¢1 if Iy C I3 and ¢; = ¢g on I;. A solution is noncontinuable
if no such continuation exists; in this case, Iy is called the mazimal interval of

eristence of ¢1.
We now state the following theorem concerning continuation of solutions.

Theorem 1.1.8. Suppose f(z,t) is CT in U and ¢(t,tg,z0), (zo,to) €U, is
a solution of (1.1.1), then there is a continuation of ¢ to a maximal interval of
existence. Furthermore, if (t1,t2) is a maximal interval of existence for ¢, then
(¢(t),t) tends to the boundary of U as t —t; and t —t3.

PROOF: See Hale [1980]. O

Terminology

At this point we want to introduce some common terminology that applies to so-
lutions of ordinary differential equations. Recall that a solution of (1.1.1) is a map
¢: I — R"™ where I is some interval in R. Geometrically, the image of I under ¢ is

a curve in R™, and this geometrical picture gives rise to the following terminology.

1) A solution ¢(t,tg,z0) of (1.1.1) may also be called the trajectory, phase curve
or motion through the point zg.

2) The graph of the solution (t,2p,z0), i-e.,
{ (z,t) € R® x R | z = o(t,t0, 20), t € I}

is called an integral curve.
3) Suppose we have a solution ¢(t,tg,zg); then the set of points in R™ through
which this solution passes as ¢ varies through I is called the orbit through zg,

denoted O(zg) and written as follows.
O(zo) = {z € R" |z = (t,t0,zp), tE€T}.
We remark that it follows from this definition that, for any T € I,
O (¢(T\ 20, z0)) = O(=0) -

The following example should serve to illustrate the terminology.
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EXAMPLE 1.1.1. Consider the following equation
F+z=0. (1.1.9)

This is just the equation for a simple harmonic oscillator having frequency one.

Writing (1.1.9) as a system we obtain
(1.1.10)

Equation (1.1.10) has the form of equation (1.1.1) with phase space RZ. The
solution of (1.1.10) passing through the point (1,0) at ¢t = 0 is given by ¢(t) =

(cost,—sint).

1) The trajectory, phase curve or motion through the point (1,0) is illustrated in
Figure 1.1.1.

.

Figure 1.1.1. Trajectory through the Point (1,0).

2) The integral curve of the solution ¢(t) = (cost,—sint) is illustrated in Figure
1.1.2.
3) The orbit through the point (1,0) is given by { (z,y) € R? | 2 +y?=1 } and
is illustrated in Figure 1.1.3.
We remark that, although the solution through (1,0) passes through the same set of
points in R? as the orbit through (1,0}, and thus both appear to be the same object
when viewed as a locus of points in ]RZ, we stress that they are indeed different

objects. A solution must pass through a specific point at a specified time and an
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A

/

Figure 1.1.2. Integral Curve of ¢(t) = (cost, —sint).

—

Figure 1.1.3. Orbit through (1,0).

orbit can be thought of as a one parameter family of solutions corresponding to
a curve of possible initial conditions for different solutions at a specific time. In
the qualitative theory of ordinary differential equations it is not unusual to use the
terms orbit and solution interchangeably and, usually, no harm comes from this.
There is a difference in the nature of solutions depending upon whether or
not the vector field depends explicitly on the independent variable (note: we will

henceforth always refer to the independent variable as time). If the vector field is



