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Preface

Smart automatic machines that may reduce our working load and minimize risk in work have
been sought for a long time. This suggests supplementing rather than supplanting, and ex-
tending rather than denying, our human capabilities to work. To be smart, the machine must
understand a scene as a human does. In other words, the machine must be able to recognize
the scene by comparing the present scene and the past scenes. The machine operates based
more on the scene it views, and it is less controlled by a set of thousands of instructions.
For these smart machines, a picture is, indeed, worth a thousand words. Pattern recognition
is the primary task of any smart automatic machine. Because the pattern to be recognized is
often received optically, it is perhaps most natural and straightforward to recognize an opti-
cal pattern by using optics. This book reviews in depth the recent progress in optical pattern
recognition, although no attempt has been made to give an encyclopedic presentation.

The book was designed to incorporate multiple facets and approaches essential for today’s
optical pattern recognition research enterprise to proceed. To this end, we have brought to-
gether leading researchers worldwide, all focusing their efforts on selected aspects of optical
pattern recognition issues in 15 chapters. The first chapter overviews pattern recognition that
is performed mainly with an optical correlator. The following four chapters describe new
approaches to optical pattern recognition: neural networks, wavelet transform, fractional
Fourier transform, and mathematical morphology. Nonlinear methods are discussed in the
following three chapters. One method employs a nonlinear device in a Fourier plane. The
other two methods apply nonlinear-quadratic and composite filters, respectively. These non-
linear filters are implemented in a conventional linear optical system. The next two chapters
describe optoelectronic hybrid systems that use an optical system and a digital computer
in recognizing an input pattern. The remaining five chapters present devices and materials
used in an optical pattern recognition system: photorefractive crystals, microlasers, bac-
teriorhodopsin, liquid-crystal spatial light modulators, and complex-function spatial light
modulators.

We thank all the authors for their excellent contributions, and we are honored to have
had an opportunity to work with them. It is early yet to estimate the magnitude of the con-
tribution optical pattern recognition will make to the extension of human capabilities and
the corresponding convenience in human life, and it would be more than a little reckless to
rank it now along with optical disk and fiber communication. But the contribution will be
in that class and will indeed be profound.

Francis T. S. Yu
Suganda Jutamulia
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1

Pattern recognition with optics

Francis T. S. Yu and Don A. Gregory

1.1 Introduction

The roots of optical pattern recognition can be traced back to Abbé’s work in 1873 [1],
when he developed a method that led to the discovery of spatial filtering to improve the
resolution of microscopes. However, optical pattern recognition was not actually appreciated
until the complex spatial filtering work of VanderLugt in 1964 [2]. Since then, techniques,
architectures, and algorithms have been developed to construct efficient optical correlators
for pattern recognition application.

Our objective in this chapter is to discuss the optical architectures and techniques as
applied to recent advances in pattern recognition. Basically there are two approaches in
the optical implementation of pattern recognition, namely, the correlation approach and the
neural net approach. In the correlation approach, there are two frequently used architectures:
the VanderLugt correlator (VLC) and the joint transform correlator (JTC). The first JTC
architecture was demonstrated by Weaver and Goodman in 1966 [3] and independently by
Rau [4]. Because of a lack of interface devices, the JTC was virtually stagnant until 1984,
when a real-time programmable JTC was reported by Yu and Lu [5]. Since then the JTC
has assumed a major role in various processing applications.

Aside from correlation applications to pattern recognition, artificial neural networks
(NN’s) are also well suited. The first optical NN is attributed to Psaltis and Farhat in 1985
[6], who showed that pattern retrieval can be achieved with a lenslet array interconnection
network.

In this chapter, advances in this rapidly growing field are reviewed and the basic optical
architectures and techniques addressed. The pros and cons of each approach are discussed.
Because of recent technical advances in interface devices [such as electronically addressable
spatial light modulators (SLM’s), nonlinear optical devices, etc.], new philosophies and new
algorithms have been developed for the design of better pattern recognition systems.

1.2 Optical correlators

The optical implementation of pattern recognition can be accomplished with either Fourier-
domain complex matched filtering or spatial-domain filtering. Correlators that use Fourier-
domain matched filtering are commonly known as VLC’s [2], and an example of
spatial-domain filtering is the JTC [3-5]. The basic distinctions between them are that the
VLC depends on Fourier-domain spatial filter synthesis (e.g., Fourier hologram), whereas
the JTC depends on spatial-domain (impulse-response) filter synthesis. In other words,

1



2 Pattern recognition with optics
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the complex spatial detection of the VanderLugt arrangement is input scene independent,
whereas the joint transform method is input scene dependent [7]. The basic optical set-
ups of these two types of correlator are depicted in Figs. 1.1 and 1.2. A prefabricated
Fourier-domain matched filter H(p, q) is needed in the VLC, whereas a matched filter is
not required in the JTC but a spatial-domain impulse response #(x, y) is needed. Although
the JTC avoids spatial filter synthesis problems, it generally suffers lower detection effi-
ciency, particularly when applied to multitarget recognition or targets embedded in intense
background noise [8]. Nonetheless, the JTC has many merits, particularly when interfaced
with electronically addressable SLM’s.

The JTC has other advantages, such as higher space-bandwidth products, lower carrier
frequency, higher index modulation, and suitability for real-time implementation. Disad-
vantages include inefficient use of illuminating light, a large transform lens, stringent spa-
tial coherence requirements, and the overall small size of the joint transform spectrum. A
quasi-Fourier-transform JTC (QFJTC) that can alleviate some of these limitations is shown
in Fig. 1.3 [9, 10]. The depth of focus is given by [10]

8 < 2A(f/b)*. (1.1)

To illustrate the shift-invariant property of the QFJTC, an input object such as that shown in
Fig. 1.4(a) is used. The joint transform power spectrum (JTPS) is recorded as a photographic
transparency, which could be thought of as a joint transform hologram (JTH). When the
recorded JTH is simply illuminated with coherent light, the cross-correlation distribution can
be viewed in the ouput plane [shown in Fig. 1.4(b)], where autocorrelation peaks indicating
the location of the input character, G, are detected.

Representative experimental results were obtained with the QFJTC with the input object
and the reference functions of Fig. 1.5(a). Three JTHs — for § = 0,8 = f/10 = 50 mm,
and § = f/5 = 100 mm — are shown in Fig. 1.5(b), which shows that the size of the JTPS
enlarges as § increases. Figure 1.6 illustrates that the correlation peak intensity increases as &
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Fig. 1.4. (a) Input object and reference function, (b) output correlator distribution.

increases, whereas the size of the correlation spot decreases as § increases. Thus the QFJTC
architecture can improve the signal-to-noise ratio (SNR) and the accuracy of detection.

1.3 Hybrid optical correlators

It is apparent that a purely optical correlator has drawbacks that make certain tasks difficult
or impossible to perform. The first problem is that optical systems are difficult to program, in
the sense of programming general-purpose digital-electronic computers. A purely optical
system can be designed to perform specific tasks (analogous to a hard-wired electronic
computer), but it cannot be used when more flexibility is required. A second problem is that



