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PREFACE TO THE EIGHTH EDITION

CuANGES that have been made in recent editions include
a set of Miscellaneous Examples at the end of the book
and an independent proof of Liouville’s theorem has been
given. In this edition, the proof of the Example on
page 50 has been altered.

Limitations of space made it necessary for me to confine
myself to the more essential aspects of the theory and its
applications, but I have aimed at including those parts of
the subject which are most useful to Honours students.
Many readers may desire to extend their knowledge of the
subject beyond the limits of the present book. Such
readers are recommended to study the standard treatises of
Copson, Functions of a Complex Variable (Oxford, 1935),
and Titchmarsh, Theory of Functions (Oxford, 1939). I
take this opportunity of acknowledging my constant
indebtedness to these works both in material and
presentation.

I have presupposed a knowledge of Real Variable
Theory corresponding approximately to the content of
my Course of Analysis (Cambridge, Second Edition,
1939). References are occasionally given to this book in
footnotes as P.A.

I wish to express my thanks to all those friends who
have made helpful suggestions. In particular, I mention
two of my colleagues, Mr A. C. Stevenson, of University
College, London, who read the proofs of the first edition,
and Prof. H. Davenport, F.R.S., who very kindly suggested
a number of improvements for the second edition. I desire
also to express my gratitude to the publishers for the careful
and efficient way in which they have carried out their

dutrivs. E- G- P.
BaANGOR, October 1956
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CHAPTER I

FUNCTIONS OF A COMPLEX VARIABLE

§1. Complex Numbers

This book is concerned essentially with the application
of the methods of the differential and integral calculus
to complex numbers. A number of the form a8, where
¢ is 4/(—1) and a and B are real numbers, is called a
complex number ; and, although complex numbers are
capable of a geometrical interpretation, it is important
to give a definition of them which depends only on real
numbers. Complex numbers first became necessary in the
study of algebraic equations. It is desirable to be able to
say that every quadratic equation has two roots, every
cubic equation has three roots, and so on. If real numbers
only are considered, the equation 2241 = 0 has no roots
and 2%—1 =0 has only one. Every generalisation of
number first presented itself as needed for some simple
problem, but extensions of number are not created by
the mere need of them ; they are created by the definition,
and our object is now to define complex numbers.

By choosing one of several possible lines of procedure,
we define a_complex number as an ordered pair of real
numbers. Thus (4, 3), (1/2, €), (}, m) are complex numbers.
If we write z = (z, y) x is called the real part, and y
the imaginary part, of the complex number z.

(i) Two complex numbers are equal if, and only if,
their real and imaginary parts are separately equal. The
equation z = 2’ implies that both z = 2" and y = ¥’.

' w




2 FUNCTIONS OF A COMPLEX VARIABLE

(ii) The modulus of z, written |z |, is defined to be
+4/(#*+y?). It follows immediately from the definition
that | z | = 0 if, and only if, z = 0 and y = 0.

(iii) The fundamental operations.

If z = (z,9), 2" = (', ¥') we have the following definitions :

(1) z42"is (x+2', y+y').

@) —zis (=2, —y).

(8) z—2' =z (—2') is (x—2', y—y').
(4) 22 is (zz'—yy', 2y +2y).

If the fundamental operations are thus defined, we easily
see that the fundamental laws of algebra are all satisfied.

(a) The commutative and associative laws of addition hold :
2142, = 2,12 ;
21+ (23+25) = (211+25) +2 = 21 +2,+2,.
(b) The same laws of multiplication hold :
2129 = 2921 ;
21(2923) = (2129)23 = 212225
(c) The distributive law holds :
(21 429)25 = 2123+2425.

As an example of the method, we show that the com-
mutative law of multiplication holds. The others are
proved similarly.

2129 = (23— Y 1Yo T1Y2+%2Y1)
= (To¥1 —YlY1» Tolf1 +T1Y2) = 292y

We have thus seen that complex numbers, as defined
above, obey the fundamental laws of the algebra of real
numbers : hence their algebra will be identical in form,
though not in meaning, with the algebra of real numbers.

We observe that there is no order among complex
numbers. As applied to complex numbers, the phrases
“ greater than ” or ‘““less than’ have no meaning. In-
equalities can only occur in relations between the moduls
of complex numbers.
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(iv) The definition of division.
Consider the equation z{=12', where z= (z,y),
= (€, n), 2" = (2", ¥’), then we have

(rg_y”’); x’f] +.7/§) = (x’r y’))

go that xb—yn =o', tnt+yé =y,
and, on solving for £ and 1,
5__w/+xf _xy =2y,

2yt 1T Ay
provided that |z | 0. Hence, if |2z| 7 0, there is a
unique solution, and { = (&, ) is the quotient 2'/z.
Division by a complex number whose modulus is zero
is meaningless; this conforms with the algebra of real
numbers, in which division by zero is meaningless.

The abbreviated notation.

It is customary to denote a complex number whose
imaginary part is zero by the real-number symbol z. If
we adopt this practice, it is essential to realise that x may
have two meanings (i) the real number z, and (ii) the
complex number (z, 0). Although in theory it is important
to distinguish between (i) and (ii), in practice it is legitimate
to confuse them ; and if we use the abbreviated notation,
in which z stands for (z, 0) and y for (y, 0), then

z+y = (z, 0)+(y, 0)= (z+y, 0),
2y=(x,0).(y,0) =(x.y—0.0,2.040.y) = (zy, 0).

Hence, so far as sums and products are concerned, complex
numbers whose imaginary parts are zero can be treated
as though they were real numbers. It is customary to
denote the complex number (0,1) by ¢. With this
convention, 32 = (0, 1).(0, 1) = (-1, 0), so that ¢+ may
be regarded as the square root of the real number —1.
On using the abbreviated notation, it follows that

(, y) = z+1y,
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for, since 1 = (0, 1), we have
= (z,0)+(0.y—1.0,0.0+1.y)

In virtue of this relation we see that, in any operation
involving sums and products, it is allowable to treat
x, y and 1 as though they were ordinary real numbers,
with the proviso that i* must always be replaced by —1.

§ 2. Conjugate Complex Numbers

If z = x4y, it is customary to write # = Rz, y = Iz.
The number xz—iy is said to be conjugate to z and is
usually denoted by z. It readily follows that the numbers
conjugate to z; 4z, and 2,2, are Z, +Z, and Z,Z, respectively.

Proofs of theorems on complex numbers are often
considerably simplified by the use of conjugate complex
numbers, in virtue of the relations, easily proved,

|z |2 =2Z, 2Rz =2+Z, 2ilz=2z—3%.

To prove that the modulus of the product of two complex
numbers is the product of their moduli, we proceed as follows:
| 2125 |* = 2020512 = 2)7) . 2.8, = | 2, |2 | 2, 2
and so, since the modulus of a complex number is never

negative,
lziza | = 21| |24 ]
Theorem. The modulus of the sum of two complex
numbers cannot exceed the sum of their modul.

| 21t2, [* = (21+25)(2,4+2,)
= 2% T2y T 22,7,
= |z | +2R(zlz )+ z, |2

= (l sz‘lzzl
and so |21tz | < |2+ 2a s
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a result which can be readily extended by induction to
any finice number of complex numbers.

In a similar way we can prove another useful result,
viz,

21—25 | = | (21 | =] 22 )]
We have
|21—5 [P = | 2y P=2R(z,5y) +] 2, 2
= |2y P2 2,2, |+ 2]
= (|21 | =]z |)%;
hence |21—22 | 2 |(| 21 |—] 25 )]

§ 3. Geometrical Representation of Complex
Numbers /Ui }'\;\

If we denote (2*+7%% by r, and choose 6 so that
rcos = x, rsinf = y, then r and @ are clearly the rzidlus

Frs: Yo

vector and vectorial angle of the point P, (z, y), referred
to ar origin O and rectahgular axes Ox, Oy. It is clear
that any complex number can be represented geometrically
by the point P, whose Cartesian coordinates are (x, y)
or whose polar coordinates are (r, 8), and the representation
of complex numbers thus afforded is called the Argand
diagram.

By the definition already given, it is evident that r
is the modulus of z = (z, y); the angle 6 is called the
argument of z, written § = argz. The argument is not
unique, for if & be a value of the argument, so also is
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2n7+6,(n =0,41,+£2,...). The principal value of arg z

is that which satisfies the inequalifigs —m<<arg z<(.

Let P, and P, (in fig. 1) be the points z; and z,, then
we can represent addition in the following way. Through
P,, draw P,P; equal to, and parallel to OP,. Then P,
has coordinates (x;+z,, y;+¥,) and so Py represents the
point z, +z,.

In vectorial notation,

6?3 = é?l_*'ﬁii = 0_131+0_132 = O—Pz“f'ﬁa-
Similarly, we have, if P, is the point z,,

24—z, = OP,—OP, = OPy+ ;P — 0P, = z,.

It is convenient to write cisf for cosf+4isinf. If
2, =rycisf,, z,=r,cisb,, .., z,=r,cisf,, then, by
de Moivre’s theorem,

2129002y = T ..., CIS(0, +0,4...+0,),

which readily exhibits the fact that the modulus and
argument of a product are equal respectively to the
product of the moduli and the sum of the arguments of
the factors. In particular, if n be a positive integer and
z =rcisf, 2" = r" cis nf.

Similarly,

A_T1y (6,—0,).

2y Ty

If »n is a positive integer, there are n distinct values of
zl/n, If m is any integer, since

I, n
(Ci59+_mﬂ) = cisé,

n

it follows that r1/" cis{(6+2m)/n} is an nth root of z2=rcis#.
If we substitute the numbers 0, 1, 2, ... n—1 in succession
for m, we obtain n distinct values of 2!/ ; and the sub-
stitution of other integers for m merely gives rise to
repetitions of these values. Also, there can be no other
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values, since z!/" is a root of the equation u" = z which
cannot have more than = roots.
Similarly, if p and q are integers prime to each other
and ¢ is positive,
2?19 = r?le cis{(pf+2mm)/q},

wherem = 0,1, 2, ..., ¢g—1.

By considering the modulus and argument of a complex
number, the operation of multiplying any complex number
z+1y by 4 is easily seen to be equivalent to turning the line
OP through a right-angle in the positive (counter-clockwise)
sense. We have just seen that

arg (z,2z;) = arg z,+arg z,, arg C—l) = arg z, —arg z,,
2

so that the formal process of ‘‘ taking arguments *’ is similar
to that of ‘‘taking logarithms.” Hence, if arg (z+iy) = a,

. : ¥ .
arg i(z+iy) = ai‘(é 1t+arg (x+1y) = dnta.
Since |+ | = 1, multiplying by % leaves | z+4y | unaltered.

§ 4. Sets of Points in the Argand Diagram

We now explain some of the termid 0gy necessary
for dealing with sets of complex numbers in the Argand
diagram. We shall use such terms as domain, contour,
wnside and outside of a closed contour, without more precise
definition than geometrical intuition requires. The general
study of such questions as the precise determination of
the tnside and outside of a closed contour is not so easy
as our intuitions might lead us to expect.* For our
present purpose, however, we shall find that no difficulties
arise from our relying upon geometrical intuition.

By a neighbourhood of a point z, in the Argand
diagram, we mean the set of all points z such that [z —z,|<e,

where € is a given positive number. A point 2, is said

* For further information, see e.g. Dienes, The Taylor Series
(Oxford, 1931), Ch. VI,
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to be a limit point of a set of points §, if every neighbour-
hood of z, contains a pomt of § other than z,. The
definition implies that every neighbourhood of a limit
point z, contains an infinife number of points of §. For,
the neighbourhood |z—£; < contains a point z; of S
distinct from 2z, the neighbourhood |z—zy|<|z;—2,]|
contains a point z, of § distinet from 2z, and so on
indefinitely.

The limit points of a set are not necessarily points of
the set. If, however, every limit point of the set belongs
to the set, we say that the set is closed. There are two
types of limit pomts intenior points and _b_qu ary points.
A limit_point z, of §i is an’interior point if’bhere exists
a_neighbourhood of z, which consists entirely of Bomtq

r_)ﬁ §_7 A_hmlt»pomt whlch»lq not an_interior pomt is a_
boundary point.
A set which consists entirely of interior points is said

to be an open set.

It should be observed that a set need not be either open
or closed. An example of such a set is that consisting of the
point z = 1 and all the points for which |z | <1.

We now define a Jordan cury

The equation z = x(t)+1y(f), J_lere z(t) and y(t) are

real continuous functions of the real variable ¢, deﬁned
in the range a <t<J, determines a set of points in the

Argand d dlaggam ‘which is called a continuous arc. A

Lnt; z, i8 a multxple point of the arc, if the equation
L = x(t)+ry(t) is satisfied by more than one value of ¢ in
_the given ranglt_z
A continuous arc without multiple points is called a

Jordan arc. If the e points corresponding to the values

a_and B coincide, the arc, which has only one multiple

point, a double point corresponding to the terminal values
a and B of ¢, is called a simple closed Jordan curve.
A set of points is said to be bounded if there exists

a constant K such that |z |<<K is satisfied for all points




