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PREFACE TO THE FIRST ENGLISH EDITION

THe present volume in the Course of [heoretical Physics deals with the theory of
electromagnetic lields in matter and with the theory of the macroscopic electric and
magnctic propertics of matter. These theories include a very wide range o topics, as may be
seen from the Conlents.

In writing this book we have experienced considerable diliculties, partly because of the
need to make a sclection from the extensive existing material, and partly because the
customary exposition of many topics to be mcluded does not possess the necessary
physical clarity. and sometimes is actually wrong We realize that our own treatiment still
has many detfects, which we hope to correct 1 future editions.

We are grateful to Protessor VoI Ginzburg, who read the beok in manuscript and made
some usceful comments. I E. Dzyaloshimskii and L. P. Prtaevskii gave great help in reading
the proofs of the Russian edition. Thanks are due aiso to Dr Sykes and Dr Bell. who rot
only carried out excellently the arduous task of translating the book, but also made some
uselul comments concerming its contents

Maoscow L. D. LaNpau
June, 1959 .M. Lusunz



NOTATION

Electric field E

Electric induction D

Magnetic field H

Magnetic induction B

External electric field €, magnitude €
External magnetic field $, magnitude $
Dielectric polarization P

Magnetization M

Total electric moment of a body 2
Total magnetic moment of a body #
Permittivity ¢

Dielectric susceptibility

Magnetic permeability pu

Magnetic susceptibility  y

Current density j

Conductivity @

Absolute tcmpéra!ure (in energy units) 7
Pressure P

Volume &
Thermodynamic quantities: per unit volume for a body
entropy S

internal energy
free energy

thermodynamic potential
(Gibbs free energy)

e M
I

Chemical potential (
A complex periodic time factor is always taken as e ™'

Volume element dV or d3x; surface element  df.

The summation convention always applies to three-dimensional (Latin) and two-
dimensional (Greek) suffixes occurring twice in vector and tensor expressions.
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CHAPTER 1

ELECTROSTATICS OF CONDUCTORS

§1. The electrostatic field of conductors

Macroscoric electrodynamics is concerned with the study of electromagnetic fields in
space that is occupied by matter. Like all macroscopic theories, electrodynamics deals with
physical quantities averaged over elements of volume which are “physically infinitesimal”,
ignoring the microscopic variations of the quantities which result from the molecular
structure of matter. For example, instead of the actual “microscopic” value of the electric
field e, we discuss its averaged value, denoted by E:

e=E. (1.1)

The fundamental equations of the electrodynamics of continuous media are obtained by
averaging the equations for the electromagnetic field in a vacuum. This method of
obtaining the macroscopic equations from the microscopic was first used by H. A. Lorentz
(1902).

The form of the equations of macroscopic electrodynamics and the significance of the
quantities appearing in them depend essentially on the physical nature of the medium, and
on the way in which the field varies with time. It is therefore reasonable to derive and
investigate these equations separately for each type of physical object.

It is well known that all bodies can be divided, as regards their electric properties, into
two classes, conductors and dielectrics, differing in that any electric field causes in a
conductor, but not in a dielectric, the motion of charges, i.e. an electric current.t

Let us begin by studying the static electric fields produced by charged conductors, that is,
the electrostatics of conductors. First of all, it follows from the fundamental property of
conductors that, in the electrostatic case, the electric field inside a:conductor must be zero.
For a field E which was not zero would cause a current; the propagation of a current in a
conductor involves a dissipation of energy, and hence cannot occur in a stationary state
(with no external sources of energy). '

Hence it follows, in turn, that any charges in a conductor must be located on its surface.
The presence of charges inside a conductor would necessarily cause an electric field in it;}
they can be distributed on its surface, however, in such a way that the fields which they
produce in its interior are mutually balanced.

Thus the problem of the electrostatics of conductors amounts to determining the electric
field in the vacuum outside the conductors and the distribution of charges on their surfaces.

At any point far from the surface of the body, the mean field E in the vacuum is almost

t The conductor is here assumed to be homogeneous (in composition, temperature, etc.). In an inhomoge-
neous conductor, as we shall see later, there may be fields which cause no motion of charges.
1 This is clearly seen from equation (1.8) below.
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the same as the actual field e. The two fields differ only :n the immediate neighbourhood of
the body. where the effect of the irregular molecuiar fields is noticeable, and this difference
does not affect the averaged field equations. The exact microscopic Maxwell’s equations in

the vacuum are
dive = 0. (1.2)

curle = —(i/c)ch/ct, (1.3)

where h is the microscopic magnetic field. Since the mean magnetic field is assumed to be
zero, the derivative ch/¢t also vanishes on averaging, and we find that the static electric field
in the vacuum satisfics the usual equations

divE = 0, ceurlE = 0, (1.4)
i.e. it is a potential field with a potential ¢ such that
E = —grad¢. (1.5)
and ¢ satisfies Laplace’s equation
AN¢p =0. (1.6)

The boundary conditions on the field E at the surface of a conductor follow from the
equation curl E = 0, which. like the original equation (1.3), is valid both outside and inside
the body. Let us take the z-axis in the direction of the normal n to the surface at some point
on the conductor. The component E, of the field takes very large values in the immediate
neighbourhood of the surface (because there is a finite potential difference over a very small
distance). This large field pertains to the surface itself and depends on the physical
properties of the surface. but is not involved in our electrostatic problem, because it falls off
over distances comparable with the distances between atoms. It is important to note,
however, that, if the surface is homogeneous, the derivatives JE,/dx, JE,/dy along the
surface remain finite, even though E_ itself becomes very large. Hence, since
(curlE), = CE,/Cy —CE /Cz = 0, we find that JE /dz is finite. This means that E, is
continuous at the surface, since a discontinuity in E, would mean an infimty of the
derivative CE,/z. The same applies to E,, and since E = 0 inside the conductor, we reach
the conclusion that the tangential components of the external field at the surface must be
zero:

E =0. (1.7

Thus the electrostatic field must be normal to the surface of the conductor at every point.
Since E = — grad ¢, this means that the field potential must be constant on the surface of
any particular conductor. In other words, the surface of a homogeneous conductor is an
equipotential surface of the electrostatic field.

The component of the field normal to the surface is very simply related to the charge
density on the surface. The relation 1s obtained from the general electrostatic equation
dive = 4np, which on averaging gives

divE = 4rp. (1.8)

p being the mean charge density. The meaning of the integrated form of this equation is
well known: the flux of the electric field through a closed surface is equal to the total charge
inside that surface, multiplied by 4n. Applying this theorem to a volume element lying
between two infinitesimally close unit arcas, one on each side of the surface of the
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conductor, and using the fact that E = 0 on the inner area, we find that £, = 4no, where o is
the surface charge density, i.e. the charge per unit area of the surface of the conductor. Thus
the distribution of charges over the surface of the conductor is given by the formula

4nog = E, = —d¢p/on, (1.9)

n

the derivative of the potential being taken along the outward normal to the surface. The
total charge on the conductor is

00 df, (1.10)

T an 0n

the integral being taken over the whole surface.

The potential distribution in the electrostatic field has the following remarkable
property: the function ¢(x,y,z) can take maximum and minimum values only at
boundaries of regions where there is a field. This theorem can also be formulated thus: a
test charge e introduced into the field cannot be in stable equilibrium, since there is no point
at which its potential energy e¢ would have a minimum.

The proof of the theorem is very simple. Let us suppose, for example, that the potential
has a maximum at some point 4 not on the boundary of a region where there is a field.
Then the point A can be surrounded by a small closed surface on which the normal
derivative 0¢/dn < 0 everywhere. Consequently, the integral over this surface
$(0¢/dn) df < 0. But by Laplace’s equation §(dp/én)df = [~ ¢pdV =0, giving a
contradiction.

§2. The energy of the electrostatic field of conductors
Let us calculate the total energy # of the electrostatic field of charged conductors,t

Y = : E2dV, (2.1)
81

where the integral is taken over all space outside the conductors. We transform this integral
as follows:

%=—§%J grad¢dV———8—de(¢E)db +vl— ¢odivEdV.
The second integral vanishes by (1.4), and the first can be transformed into integrals over
the surfaces, of the conductors which bound the field and an integral over an infinitely
remote surface. The latter vanishes, because the field diminishes sufficiently rapidly at
infinity (the arbitrary constant in ¢ is assumed to be chosen so that ¢ = 0 at infinity).
Denoting by ¢, the constant value of the potential on the ath conductor, we havet

1 1
¥=4=F §¢E"d/= & 2 % SEEndf

t The square E? is not the same as the inean square e* of the actual field near the surface of a conductor or
inside it (where E = 0 but, of course, e # 0 By calculating the integral (2.1) we ignore the internal energy of the
conductor as such, which is here of no interest, and the affinity of the charges for the surface.

t Intransforming volume integrals into surface integrals, both here and later, it must be borne in mind that E,
is the component of the fieid along the cutward normal to the conductor. This direction is opposite to that of the
outward normal to the region of the volume integration, namely the space outside the conductors. The sign of the
integral is therefore changed in the transformation.
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Finally, since the total charges ¢, on the conductors are given by (1.10) we obtain

=13 e, (22)
. a
which is analogous to the expression for the energy of a sysiem of point charges.

The charges and potentials of the conductors cannot both be arbitrarily prescribed:
there are certain relations between them. Since the field equations in a vacuum are linear
and homogeneous, these relations must also be linear, i.e. they must be given by equations
of the form

€= Cus. (2.3)
b

where the quantities C,,, C,, have the dimensions of length and depend on the shape and
relative position of the conductors. The quantities C,, are called coefficients of capacity.
and the quantities C, (a # b) are called coefficients of electrostatic induction. In particular,
if there is only one conductor, we have e = C¢, where C is the capacitance, which in order
of magnitude is equal to the linear dimension of the body. The converse relations, giving
the potentials in terms of the charges, are

= Z C™ s (2.4)
b

where the coefficients C™*,, form a matrix which is the inverse of the matrix C,,.

Let us calculate the change in the energy of a system of conductors caused by an
infinitesimal change in their charges or potentials. Varying the original expression (2.1), we
have 6% = (1/4n) (E -SEdV. This can be further transformed by two equivalent
methods. Putting E = — grad ¢ and using the fact that the varied field, like the original
field, satisfies equations (1.4) (so that divdE = 0), we can write

. 1 1
_ e — . e i I/'
ouU i jgradd) SEdV o jdlv(cb O0E)d

1 L
=E§¢“ §0£, dj,

that is

wn

SU=Y ¢,be,, (2.5)

which gives the change in energy due to a change in the charges. This result is obvious; it is
the work required to bring infinitesimal charges de, to the various conductors from

infinity, where the field potential is zero.
On the other hand, we can write

1 A 1 (
S = —— . 1 5 V= —— i 5dV
SU yye fE grad d¢p dF o J div (Ei P)

1 .
4_- Z ¢Q‘§Ell df?
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that is

su =Y e,b6,. (2.6)

which expresses the change in energy in terms of the change in the potentials of the
conductors. _

Formulae (2.5) and (2.6) show that, by differentiating the energy # with respect to the
charges, we obtain the potentials of the conductors. and the derivatives of # with respect
to the potentials are the charges:

CUjce,=¢,. CUCP,=e,. (2.7

But the potentials and charges are linear functions of each other. Using (2.3) we have
U /ép, o, = Ce, /i, = C,,, and by reversing the order of differentiation we get C,,.
Hence it follows that

Co=Cy. (2.8)

and similarly C ™', = C ', Theenergy # can be written as a quadratic form in either the
potentials or the charges:

U =3 Z Car®us =3 2 C™lpeqey (2.9)
a. b a. b
This quadratic form must be positive definite. like the original expression (2.1). From
this condition we can derive various inequalities which the coefficients C,, must satisfy. In
particular, all the coefficients of capacity are positive:

C,>0 (2.10)

aa

(and also C™',, > 0).t
All the coefficients of electrostatic induction, on the other hand. are negative:

Cip <0 (a#b) (2.11)

That this must be so is seen from the following simple arguments. Let us suppose that
every conductor except the ath is earthed. i.e. their potentials are zero. Then the charge
induced by the charged ath conductor on another (the bth, say)ise, = C,,¢,. It is obvious
that the sign of the induced charge must be opposite to that of the inducing potential. and
therefore C,, < C. This can be more rigorously shown from the fact that the potential of the
electrostatic field cannot reach a maximum or minimum outside the conductors. For
example, let the potential ¢, of the only conductor not earthed be positive. Then the
potential is positive in all space, its least value (zero) being attained only on the earthed
conductors. Hence it follows that the normal derivative ¢¢,/¢n of the potential on the
surfaces of these conductors is positive, and their charges are therefore negative. by (1.10).
Similar arguments show that C™*, > 0.

The energy of the electrostatic field of conductors has a certain extremum property.
though this property is more formal than physical. To derive it. let us suppose'tha! the

+ We may alsc mention that another inequality which must be satisfied if the form (2.9) is positive is
Cnncob > Cabz
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charge distribution on the conductors undergoes an infinitesimal change (the total charge
on each conductor remaining unaltered), in which the charges may penetrate into the
conductors; we ignore the fact that such a charge distribution cannot in reality be stationary.
We consider the change in the integral % = (1/8n) [ E*dV, which must now be extended
over all space, including the volumes of the conductors themselves (since after the
displacement of the charges the field E may not be zero inside the conductors). We write

: 1 .
- | | grad ¢ - SE d¥

= s |dn(¢bE)db +-——J¢d1v6Edv

The first integra! vanishes, being equivalent to one over an infinitely remote surface. In the
second integral, we have by (1.8) divdE = 4ndp, so that % = [@dpdV. This integral
vanishes if ¢ is the potential of the true electrostatic field, since then ¢ is constant inside
each conductor. and the integral |5 d} over the volume of each conductor is zero, since
its total charge remains unaltered.

Thus the energy of the actual electrostatic field is a minimumt relative to the energies of
fields which could be produced by any other distribution of the charges on or in the
conductors (Thomson’'s theorem).

From this theorem it follows, in particular, that the introduction of an uncharged
conductor into the field of given charges (charged conductors) reduces the total energy of
the field. To prove this, it is sufficient to compare the energy of the actual field resulting
from the introduction of the uncharged conductor with the energy of the fictitious field in
which there are no induced charges on that conductor. The former energy, since it has the
least possible value, is less than the latter energy, which is also the energy of the original
field (since, in the absence of induced charges. the field would penetrate into the conductor,
and remain unaltered). This resuit can also be formulated thus: an uncharged conductor
remote from a system of given charges is attracted towards the system.

Finally, it can be shown that a conductor (charged or not) brought into an electrostatic
field cannot be in stable equilibrium under electric forces alone. This assertion generalizes
the theorem for a point charge proved at the end of §1, and can be derived by combining the
latter theorem with Thomson'’s theorem. We shall not pause to give the derivation in detail.

Formulae (2.9) are useful for calculating the energy of a system of conductors at finite
distances apart. The energy of an uncharged conductor in a uniform external field €, which
may be imagined as due to charges at infinity, requires special consideration. According to
(2.2). this energy is # = 4e¢, where ¢ is the remote charge which causes the field, and ¢ is
the potential at this charge due to the conductor. # does not include the energy of the
charge e in its own field, since we are interested only in the energy of the conductor. The
charge on the conductor is zero, but the external field causes it to acquire an electric dipole
moment. which we denote by 2. The potential of the electric dipole field at a large distance
rfromitis¢ = 22 -r/r’. Hence % = ¢ - r;2r. But —er/r? is just the field (‘."due to the
charge e. Thus

U=-19 €. (2.12)

+ We shall not give here the simple arguments which demonstrate that the extremum is a minimum.
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Since all the field equations are linear, it is evident that the components of the dipole
moment 2 are linear functions of the components of the field €. The coefficients of
proportionality between 2° and € have the dimensions of length cubed, and are therefore
proportional to the volume of the conductor:

=V, E,. (2.13)

where the coefficients «,, depend only on the shape of the body. The quantities Fx,, form
a tensor, which may be called the polarizability tensor of the body. This tensor is
symmetrical: %, = 2,,, a statement which will be proved in §i1. Accordingly. the energy

(2.12) is
¥= -1V, CE, (2.14)

PROBLEMS

PrOBLEM 1. FExpress the mutual capacitance C of two conductors (with charges +e¢) in terms of the
coefficients C .

SorLuTioN. The mutual capacitance of two conductors is defined as the coefficient C in the relation
e=C(¢,—¢,). and the energy of the system is given in terms of C by # = 4e?/C. Comparing with (2.9).
we obtain

1/C=C"",=-2C""',+C™',,

= (Cy; +2C,, +C;,)'(C1,Cy, —C, ).

PROBLEM 2. A point charge e is situated at O. near a system of earthed conductors, and induces on them
charges e,. If the charge e were absent. and the ath conductor were at potential ¢',, the remainder being earthed.
the field potential at O would be ¢ ,. Express the charges ¢, in terms of ¢', and ¢',.

SoruTion. If charges e, on the conductors give them potentials ¢, and similarly for ¢', and ¢, it follows
from (2.3) that
z ¢ne,n = Z ¢ncab¢'b = Z¢’aer
a a b @
We apply this relation to two states of the system formed by all the conductors and the charge e (regarding the
latter as a very small conductor). In one state the charge e is present, the charges on the conductors are e,, and their
potentials are zero. In the other state the charge e is zero. and one of the conductors has a potential ¢', # 0. Then
we have e¢’y +e,¢', = 0. whence ¢, = —e¢'y/¢’,.
Forexample, if a charge e is at a distance r from the centre of an earthed conducting sphere with radius a (< r),
then ¢', = ¢',a/r, and the charge induced on the sphere is e, = —ea/r.
As a second example, let us consider a charge e placed between two concentric conducting spheres with radiia
and b, at a distance r from the centre such that a < r < b. If the outer sphere is earthed and the inner one is
charged to potential ¢',, the potential at distance r is

lb
¢0 ¢|l

/a—

Hence the charge induced on the inner sphere by the charge eis e, = —ea(b—r)/r(b—a). Similarly the charge
induced on the outer sphere is e, = —eb(r —a)/r(b—a).

PrOBLEM 3. Two conductors, with capacitances C, and C,, are placed at a distance r apart which is large
compared with their dimensions. Determine the coefficients C,,.

SoruTioN. If conductor 1 has a charge e,, and conductor 2 is uncharged, then in the first approximation
¢, = e, C ¢, = e| /r: here we neglect the variation of the field over conductor 2 and its polarizaiion. Thus
=4 Cl C™ 'y, = l/r.and similarly C~',, = 1/C,. Hence we findt

C,C (e e C,C.
Cn=cl(1+ :;1>- C:zz’"xr_z- sz—cz<l+__z)

t The subsequent terms in the expansion are in general of order (in 1/r) one higher than those given. If.
however, r is taken as the distance between the “centres of charge” of the two bodies (for spheres, between the
geometrical centres), then the order of the subsequent terms is two higher




