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PREFACE

This book concerns the application of the theory of nonnegative matrices to
certain problems arising in positive linear differential and control systems.
As such, the book will be useful as a graduate level course or seminar text in
applied mathematics. Furthermore, since nonnegative matrices and positive
linear dynamic systems are relevant in economics, engineering, numerical
analysis, operations research, as well as various life and social sciences, we
expect that it will also be of interest to workers in these fields.

In order to give the reader a feeling for the content of the book, we now
give simplified descriptions of some of the applied problems and topics
studied. In doing so, we make some use of certain real world dynamic
models for expository purposes. These models and others are described in
greater detail in the glossary of Section 3.4; the models are used in the book
in order to provide simple illustrations of various aspects of the theory being
developed.

1. THE LINEAR DIFFERENTIAL SYSTEM x(¢) = Ax(z)

Here A is a real constant n X n matrix.

1.1. Exponential Nonnegativity

Given a proper cone % C R", determine whether x(0) € % = x(¢) € J for all
t=0. In other words, we wish to characterize the situation wherein every
initial state x(0) in % gives rise to a solution x(t) = ¢'“x(0), which remains in
9% for all time. Should this occur, we say that A is exponentially ¥-
nonnegative. For an illustration of this idea, consider an n-species ecological
system, where x,(r) represents the mass of species i at time ¢, and a,; Is a
coefficient which reflects the effect of the mass of species j on the rate of
change of species i. Then the diagonal terms a, represent the difference
between the birth and death rates of species i; there is no sign restriction on
this difference. Since no species can have negative mass, a reasonable
requirement on the dynamics of this model is that x(0)= 0= x(¢) =0 for all
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t=0; that is, we require exponential R”, -nonnegativity of A. It will be seen
that this is equivalent to ali the off-diagonal entries of A being nonnegative.
We call this the species cooperation condition, since it says the system is in
symbiosis; that is, no species has a detrimental effect on any other species.

1.2. Cone Reachability

For a proper cone % C R" and an exponentially %-nonnegative matrix A,
find the set of initial states x(0) € R" such that x(z) € % for all sufficiently
large 1. In other words, we wish to characterize the set of initial states
X ,(J¢) which give rise to solutions of x(t) = Ax(t), which enter and remain
in the cone J. Again consider the symbiotic model described above. Given
an initial state x(0) =0, suppose that we wish to determine whether x(¢) =
e'"Ax(0)= 0 for all ¢ sufficiently large; that is, all species eventually have
nondecreasing mass. This occurs if and only if Ax(0) € X ,(R".).

1.3. Extended M-Matrices

Given a proper cone # C R", suppose that the matrix —A is essentially
HK-nonnegative; that is, (al — A)J C ¥ for some real number a. Then A is
said to be an M-matrix with respect to ¥ provided that no eigenvalue of A
has a strictly negative real part; M-matrices are important in economics,
mathematical programming, statistics, and numerical analysis, especiaily for
J = R’,. We shall investigate how various aspects of the theory of M-
matrices generalize when the assumption of essential J-nonnegativity is
replaced by the generally weaker assumption of exponential % -non-
negativity.

2. THE POSITIVE LINEAR CONTROL SYSTEM x(¢) = Ax(#) + Bu(?)

Here A and B are real constant n X n and n X m matrices, respectively. The
time varying vectors x(¢) and u(t) are called the state and control (or input)
functions, respectively. By a ‘“‘positive’” control system we mean one in
which either the control, the state, or some system output vector might be
required to belong to a given proper cone.

2.1. Controllability with Nonnegative Controls

Given that the control function is required to be valued in a proper cone for
each t =0, determine whether the origin 0 is controllable; that is, whether
there exists an open neighborhood &, of the origin such that for any initial
state x(0) € X, there exists an admissible control function such that x(f) =0
for some £>0. As an illustration, consider the harmonic oscillator given by
the spring-mass system shown below.
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Figure P-1

Here d(¢) denotes the displacement from the neutral position of the spring,
and u(t) is a horizontally applied force. The state of this system is x(¢) =
[d(t), d(t)]. Tt will be seen that (0,0) is controllable with nonnegative
controls provided that the coefficient of friction is sufficiently large relative
to the spring constant. In other words, when the physical constants satisfy
this condition, the system can be steered to rest by “pushing only to the
right,” for any initial state in an open neighborhood of (0, 0).

2.2. Observability with Conical Observation Set

For a proper cone % C R" and a ¢ X n matrix C, we say that the control
system given by x(t) = Ax(t) + Bu(t) is F -observable provided that the
following holds. If Cx(¢) and Cx(t) are two output vectors which arise from
the same input and whose difference is contained in % on a nontrivial time
interval [0, T'], then x(¢) = x(¢) for all 1=0. As an illustration, consider the
following electrical circuit.

R L D
—AMW— L1 {>—o
cC_— terminal
Figure P-2

Here R, L, and C denote resistance, inductance, and capacitance, respec-
tively; D is a diode; and u(t) is the applied voltage. The state of this system
is [x,(1), x,(¢)], where x, denotes the current in the loop and x, denotes the
voltage across the terminal. Taking C = (0, 1) and % = R, this system will
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be seen to be J-observable. This implies that if the initial state is not the
origin, then the voltage will at some future time be negative if no control is
applied.

2.3. Positive Realization

For a given scalar input-scalar output map %, find a positive realization.
That is, find a control system %(t) = Ax(t) + Bu(t) (where the control is
scalar valued) and a column vector ¢ such that any nonnegative control
function gives rise to a nonnegative output ¢’x(r) = (F[u])(1).

2.4. Controllability to R",

Find the set of initial states x(0) € R" such that by suitable choice of control
in the system x(¢) = Ax(t) + Bu(t) we have x(¢t) =0 for all ¢ sufficiently large.
Upon applying results on exponentially nonnegative matrices in certain
cases, we will find that the R’ -controllability problem reduces to charac-
terizing the existence of an m X n matrix F such that A + BF is essentially
R’ -nonnegative and irreducible. It will also be seen that under the feedback
law u(¢) = Fx(t), any nonnegative initial state gives rise to a trajectory x(r)
all of whose components are strictly positive for all positive time.

2.5. Stabilizability-holdability

Find, if possible, a linear feedback law u(r) = Fx(¢) such that under this law
all trajectories of the control system x(¢) = Ax(t) + Bu(t) which originate in
R’, remain in R" for all =0 while asymptotically deteriorating to the
origin. This problem is equivalent to finding an m X n matrix F such that
—(A + BF) is a nonsingular M-matrix with respect to R’

The book consists of eight chapters. The first two are concise reviews of
the requisite material in convex analysis and matrix theory, respectively.
(The bibliographic notes to Chapters 1 and 2 provide references where the
proofs of the main results may be found.) Chapter 3 contains a detailed
review of linear differential and control systems. The remaining five chap-
ters address the applied subjects touched upon above, and related topics.
The book could serve as the text for either a one or two semester graduate
level course or seminar, depending on how much time is devoted to the
background material.

The logical interdependence of the chapters is summarized in Figure P-3.

The book contains exercises whose purpose is to reinforce the back-
ground and to strengthen understanding of the applications. We recommend
that all the exercises be attempted.

Internal referencing makes use of the following protocols: Lemma 3.47
refers to Lemma 3.47 of the same chapter, while Lemma 3.3.47 refers to
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Lemma 3.47 of Chapter 3. The same method of numbering also applies to
other items such as definitions, exercises, etc. In the bibliographic notes at
the end of each chapter, we utilize the following conventions: Jones [1981]
refers to a publication by Jones which appeared in 1981. A reference such as
[1977a] or [1977b] indicates multiple references in 1977 by an author. Also,
references such as Smith {a] refer to work which has not yet appeared in
print at the time that the manuscript of this book was submitted for

publication.
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1

CONVEX SETS

1. INTRODUCTION

This chapter constitutes a review of the material on convexity which will be
required in the ensuing chapters. In Section 2 we shall state, without proofs,
relevant classical results regarding convex sets and cones. In particular, we
concisely review results on extreme points, polyhedrality, support, separa-
tion, as well as results concerning dual cones. Several exercises are included;
some of these will also be referred to subsequently. In Section 3 we state a
required result from real analysis; namely, that the class of Lebesgue
measurable functions which map a compact interval into a compact convex
set is weakly compact. Section 4 consists of bibliographic notes.

2. CONVEX SETS AND CONES

A set SCR" is said to be convex if ax' +(1—a)x’ €S for any points
x', x> € § and all « €0, 1]. In other words, the line segment with endpoints
x' and x? is contained in S. Given an arbitrary set W C R", we denote the
convex hull of W by conv(W); this is the smallest convex set containing W,
Upon noting that the intersection of an arbitrary number of convex sets is
itself convex, it follows that

conv(W)=1{SCR": WCS, S convex} .

A vector x € R" is said to be a convex combination of the vectors x' € R”,
i=1,2,...,k, provided that there exist ; =0, i=1,2,..., k such that
Zf:l a; =1 and x=2f.‘:, a,.xi. Given a set W C R", the set of all convex
combinations of points in W will be denoted C(W).

(2.1) Exercise. For any set W we have C(W) = conv (W).

The following result, known as Carathéodory’s theorem, strengthens the
preceding exercise.



2 CONVEX SETS

(2.2) Theorem. Let W be an arbitrary set in R”, and let x € cony (W) Then
there exists a set of points {x'}"*' C W such that x € Clx', x> ..., x"h.
0

A subset M of R" is called an affine set if ax' + (1 — a)x* € M for every
x' € M, x> € M and a € R. Characterizations of affine sets are given in the
next exercise.

(2.3) Exercise. Let M be a subset of R”. Then the following are equivalent.

(i) M is an affine set.
(ii) There exists a linear subspace ¥ C R" and a point p € M such that
M=p+ ¥.
(iii) There exists an m X n matrix B and a vector b€ R
that M = {xER" : Bx = b}.

nt

, m=n, such

Given a set W C R", we denote the affine hull of W by aff (W); this is the
smallest affine set which contains W. It is readily noted that a convex set S
has nonempty interior relative to its affine hull. This relative interior will be
denoted ri (§). More generally, we will denote the interior of a set W with
respect to an affine set Q by ri, (W). Hence for a convex set § we have
1i (§) = ri,g, (5). The boundary of W relative to Q is denoted rb, (W). If
S is convex, then we shall write rb (§) =r1b, (S) The ordinary interior
and boundary of a set W (that is, with respect to R") are denoted int W and
d W, respectively, and the closure of W is denoted cl (W).

(2.4) Exercise. Let S be a convex set. Then the following hold.

(i) For any x'€ri(S) and x’ €cl(S), ax'+(1 - a)x’ €r1i (S) for all
ae(0,1].

(ii) The sets ¢l (S) and ri (S) are convex and have the same affine hull as
S.

Let S C R" be a convex set. A point x € S is said to be an extreme point of
S provided that x cannot be expressed as a convex combination of two
points in S which are distinct from x. The set of all extreme points of § is
denoted by EP(S). A fundamental characterization of compact convex sets
in terms of extreme points is given by the following result.

(2.5) Theorem. Let SCR" be a compact convex set. Then S=
conv (EP(S)).
O

A set of the form ¥ = J#(a, v)={xER": v'x=a)}, where 0# v € R"
and a € R is said to be a hyperplane. (At times we will use inner product
notation in order to express ¥ as {x € R" : (v, x) = a}.) In view of Exercise
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2.3, ¥ is affine and is a translation of an (s — 1)-dimensional linear
subspace. The vector v is called a normal to J, since it is orthogonal to the
difference of any two vectors in . The opposite closed halfspaces associated
with 9 are the sets {xER":v'x=a) and {xER" : v x = a}.

A face of a convex set S is a convex subset S’ C § with the property that
any line segment L C S such that S’ Nri (L)@ has both endpoints in S'.
The empty set as well as any extreme point of S are faces of S. Also, it is
readily noted that any extreme point of a face of S is also an extreme point
of S.

A set is said to be polyhedral if it is expressible as the intersection of a
finite family of closed halfspaces. Note that a polyhedral set is closed and
convex, but not necessarily bounded. The following result summarizes
important facts regarding polyhedrality.

(2.6) Theorem. Let S be a convex set. Then the following are equivalent.

(i) S is closed and has a finite number of extreme points.
(ii) S is closed and has a finite number of faces.
(iii) S is polyhedral.
0O

In view of Theorems 2.5 and 2.6, a compact convex set S is polyhedral if
and only if it is finitely generated; that is, S is the convex hull of a finite set of
points.

A fundamental separation result for convex sets is given next.

(2.7) Theorem. Let S and U be convex subsets of R” whose relative
interiors have empty intersection. Then there exists a hyperplane % C R"
such that § and U are contained in opposite closed halfspaces associated
with . What is more, % may be chosen so that % N {rb(S)} =9 and
FHNA{ri($)}=4.

t

The hyperplane # in Theorem 2.7 is said to separate the sets § and U.
This theorem implies that if S is a convex set and x € 48, then there exists a
hyperplane % = #(a, v) containing x (i.e., @ = v'x) such that S is con-
tained in one of the closed halfspaces associated with . Then we say that 3
supports S at x, and v is called a normal to S. In case # N cl (S) = x, then we
say that # strictly supports S at x.

Suppose that S is a convex subset of R” and x € 4S. If 0% v € R" satisfies
(v,y—x)=0forally €S, then vis called an outward normal to § at x, and
in this case the hyperplane (v "x, v) supports § at x. The set of all outward
unit normals to S at x is denoted by N (x). (Here ‘“unit” means euclidean
length equaling unity.) It is readily noted that A(x) is a closed set.

In the next result, a strengthening of the hypotheses of Theorem 2.7
yields correspondingly stronger conclusions.



