LNCS 4064

Roland Biischkes
Pavel Laskov (Eds.)

Detection of Intrusions
and Malware &
Vulnerability Assessment

Third International Conference, DIMVA 2006
Berlin, Germany, July 2006
Proceedings

@&

DIMVA 2006

@_ Springer



Roland Biischkes Pavel Laskov (Eds.)

Detection of Intrusions
and Malware &
Vulnerability Assessment

Third International Conference, DIMVA 2006
Berlin, Germany, July 13-14, 2006
Proceedings

@ Springer



Volume Editors

Roland Biischkes

RWE AG

Opernplatz 1, 45128 Essen
Germany

E-mail: roland.bueschkes @rwe.com

Pavel Laskov

Fraunhofer FIRST

Kekuléstr. 7, 12489 Berlin, Germany
E-mail: pavel.laskov@first.fraunhofer.de

Library of Congress Control Number: 2006928329

CR Subject Classification (1998): E.3, K.6.5, K.4, C.2,D.4.6
LNCS Sublibrary: SL 4 — Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-36014-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-36014-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11790754 06/3142 543210



Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4064



Lecture Notes in Computer Science

For information about Vols. 1-3979

please contact your bookseller or Springer

Vol. 4072: M. Harders, G. Székely (Eds.), Biomedical
Simulation. XI, 216 pages. 2006.

Vol. 4069: E.J. Perales, R.B. Fisher (Eds.), Articulated
Motion and Deformable Objects. XV, 526 pages. 2006.

Vol. 4068: H. Schirfe, P. Hitzler, P. @hrstrgm (Eds.),
Conceptual Structures: Inspiration and Application. XI,
455 pages. 2006. (Sublibrary LNAI).

Vol. 4067: D. Thomas (Ed.), ECOOP 2006 — Object-
Oriented Programming. XIV, 527 pages. 2006.

Vol. 4066: A. Rensink, J. Warmer (Eds.), Model Driven
Architecture — Foundations and Applications. XII, 392
pages. 2006.

Vol. 4064: R. Biischkes, P. Laskov (Eds.), Detection of

Intrusions and Malware & Vulnerability Assessment. X,
195 pages. 2006.

Vol. 4063: 1. Gorton, G.T. Heineman, I. Crnkovic, H.W.
Schmidt, J.A. Stafford, C.A. Szyperski, K. Wallnau
(Eds.), Component-Based Software Engineering. XI,
394 pages. 2006.

Vol. 4060: K. Futatsugi, J.-P. Jouannaud, J. Meseguer

(Eds.), Algebra, Meaning and Computation. XXXVIII,
643 pages. 2006.

Vol. 4059: L. Arge, R. Freivalds (Eds.), Algorithm The-
ory — SWAT 2006. XII, 436 pages. 2006.

Vol. 4058: L.M. Batten, R. Safavi-Naini (Eds.), Informa-
tion Security and Privacy. XII, 446 pages. 2006.

Vol. 4057: J.P. W. Pluim, B. Likar, F.A. Gerritsen (Eds.).
Biomedical Image Registration. XII, 324 pages. 2006.

Vol. 4056: P. Flocchini, L. Gasieniec (Eds.), Structural
Information and Communication Complexity. X, 357
pages. 2006.

Vol. 4055: J. Lee, J. Shim, S.-g. Lee, C. Bussler, S. Shim
(Eds.), Data Engineering Issues in E-Commerce and Ser-
vices. IX, 290 pages. 2006.

Vol. 4054: A. Horvith, M. Telek (Eds.), Formal Methods
and Stochastic Models for Performance Evaluation. VIII,
239 pages. 2006.

Vol. 4053: M. Ikeda, K.D. Ashley, T.-W. Chan (Eds.),
Intelligent Tutoring Systems. XX VI, 821 pages. 2006.

Vol. 4052: M. Bugliesi, B. Preneel, V. Sassone, 1. We-
gener (Eds.), Automata, Languages and Programming,
Part II. XXIV, 603 pages. 2006.

Vol. 4051: M. Bugliesi, B. Preneel, V. Sassone, I. We-
gener (Eds.), Automata, Languages and Programming,
Part 1. XXIII, 729 pages. 2006.

Vol. 4048: L. Goble, J.-J.C.. Meyer (Eds.), Deontic Logic
and Artificial Normative Systems. X, 273 pages. 2006.
(Sublibrary LNAI).

Vol.4046: S.M. Astley, M. Brady, C. Rose, R. Zwiggelaar
(Eds.), Digital Mammography. X VI, 654 pages. 2006.

Vol. 4045: D. Barker-Plummer, R. Cox, N. Swoboda
(Eds.), Diagrammatic Representation and Inference. XII,
301 pages. 2006. (Sublibrary LNAI).

Vol. 4044: P. Abrahamsson, M. Marchesi, G. Succi
(Eds.), Extreme Programming and Agile Processes in
Software Engineering. XII, 230 pages. 2006.

Vol. 4043: A.S. Atzeni, A. Lioy (Eds.), Public Key In-
frastructure. XI, 261 pages. 2006.

Vol. 4042: D. Bell, J. Hong (Eds.), Flexible and Efficient
Information Handling. XVI, 296 pages. 2006.

Vol. 4041: S.-W. Cheng, C.K. Poon (Eds.), Algorithmic
Aspects in Information and Management. X1, 395 pages.
2006.

Vol. 4040: R. Reulke, U. Eckardt, B. Flach, U. Knauer,
K. Polthier (Eds.), Combinatorial Image Analysis. XII,
482 pages. 2006.

Vol. 4039: M. Morisio (Ed.), Reuse of Off-the-Shelf
Components. XIII, 444 pages. 2006.

Vol. 4038: P. Ciancarini, H. Wiklicky (Eds.), Coordina-
tion Models and Languages. VIII, 299 pages. 2006.

Vol. 4037: R. Gorrieri, H. Wehrheim (Eds.), Formal
Methods for Open Object-Based Distributed Systems.
XVII, 474 pages. 2006.

Vol. 4036: O. H. Ibarra, Z. Dang (Eds.), Developments
in Language Theory. XII, 456 pages. 2006.

Vol. 4035: T. Nishita, Q. Peng, H.-P. Seidel (Eds.), Ad-
vances in Computer Graphics. XX, 771 pages. 2006.

Vol. 4034: J. Miinch, M. Vierimaa (Eds.), Product-
Focused Software Process Improvement. XVII, 474
pages. 2006.

Vol. 4033: B. Stiller, P. Reichl, B. Tuffin (Eds.), Per-
formability Has its Price. X, 103 pages. 2006.

Vol. 4032: O. Etzion, T. Kuflik, A. Motro (Eds.),
Next Generation Information Technologies and Systems.
XIII, 365 pages. 2006.

Vol. 4031: M. Ali, R. Dapoigny (Eds.), Innovations in
Applied Artificial Intelligence. XXIII, 1353 pages. 2006.
(Sublibrary LNAI).

Vol. 4029: L. Rutkowski, R. Tadeusiewicz, L.A. Zadeh,
J. Zurada (Eds.), Artificial Intelligence and Soft Comput-
ing — ICAISC 2006. XXI, 1235 pages. 2006. (Sublibrary
LNAI).

Vol. 4027: H.L. Larsen, G. Pasi, D. Ortiz-Arroyo, T.
Andreasen, H. Christiansen (Eds.), Flexible Query An-
swering Systems. XVIII, 714 pages. 2006. (Sublibrary
LNAI).



Vol. 4026: P.B. Gibbons, T. Abdelzaher, J. Aspnes, R.
Rao (Eds.), Distributed Computing in Sensor Systems.
X1V, 566 pages. 2006.

Vol. 4025: E. Eliassen, A. Montresor (Eds.), Distributed
Applications and Interoperable Systems. XI, 355 pages.
2006.

Vol. 4024: S. Donatelli, P. S. Thiagarajan (Eds.), Petri
"Nets and Other Models of Concurrency - ICATPN 2006.
XI, 441 pages. 2006.

. Vol. 4021: E. André, L. Dybkjer, W. Minker, H. Neu-
mann, M. Weber (Eds.), Perception and Interactive Tech-
nologies. XI, 217 pages. 2006. (Sublibrary LNAI).

Vol. 4020: A. Bredenfeld, A. Jacoff, I. Noda, Y. Takahashi
(Eds.), RoboCup 2005: Robot Soccer World Cup IX.
XVII, 727 pages. 2006. (Sublibrary LNAI).

Vol. 4019: M. Johnson, V. Vene (Eds.), Algebraic
Methodology and Software Technology. XI, 389 pages.
2006.

Vol. 4018: V. Wade, H. Ashman, B. Smyth (Eds.), Adap-
tive Hypermedia and Adaptive Web-Based Systems.
XVI, 474 pages. 2006.

Vol. 4016: J.X. Yu, M. Kitsuregawa, H.V. Leong (Eds.),
Advances in Web-Age Information Management. XVII,
606 pages. 2006.

Vol. 4014: T. Uustalu (Ed.), Mathematics of Program
Construction. X, 455 pages. 2006.

Vol. 4013: L. Lamontagne, M. Marchand (Eds.), Ad-
vances in Artificial Intelligence. XIII, 564 pages. 2006.
(Sublibrary LNAI).

Vol. 4012: T. Washio, A. Sakurai, K. Nakajima, H.
Takeda, S. Tojo, M. Yokoo (Eds.), New Frontiers in Ar-
tificial Intelligence. XIII, 484 pages. 2006. (Sublibrary
LNAI).

Vol. 4011: Y. Sure, J. Domingue (Eds.), The Semantic
Web: Research and Applications. XIX, 726 pages. 2006.
Vol. 4010: S. Dunne, B. Stoddart (Eds.), Unifying The-
ories of Programming. VIII, 257 pages. 2006.
Vol. 4009: M. Lewenstein, G. Valiente (Eds.), Combina-
torial Pattern Matching. XII, 414 pages. 2006.

Vol. 4008: J.C. Augusto, C.D. Nugent (Eds.), Designing
Smart Homes. X1, 183 pages. 2006. (Sublibrary LNAI).

Vol. 4007: C. Alvarez, M. Serna (Eds.), Experimental
Algorithms. XI, 329 pages. 2006.

Vol. 4006: L.M. Pinho, M. Gonzélez Harbour (Eds.), Re-
liable Software Technologies — Ada-Europe 2006. XII,
241 pages. 2006.

Vol. 4005: G. Lugosi, H.U. Simon (Eds.), Learning The-
ory. XI, 656 pages. 2006. (Sublibrary LNAI).

Vol. 4004: S. Vaudenay (Ed.), Advances in Cryptology -
EUROCRYPT 2006. XIV, 613 pages. 2006.

Vol. 4003: Y. Koucheryavy, J. Harju, V.B. Iversen (Eds.),
Next Generation Teletraffic and Wired/Wireless Ad-
vanced Networking. XVI, 582 pages. 2006.

Vol. 4001: E. Dubois, K. Pohl (Eds.), Advanced Infor-
mation Systems Engineering. XVI, 560 pages. 2006.
Vol.3999: C. Kop, G. Fliedl, H.C. Mayr, E. Métais (Eds.),

Natural Language Processing and Information Systems.
XIII, 227 pages. 2006.

Vol. 3998: T. Calamoneri, I. Finocchi, G.F. Italiano
(Eds.), Algorithms and Complexity. XII, 394 pages.
2006.

Vol. 3997: W. Grieskamp, C. Weise (Eds.), Formal Ap-
proaches to Software Testing. XII, 219 pages. 2006.

Vol. 3996: A. Keller, J.-P. Martin-Flatin (Eds.), Self-
Managed Networks, Systems, and Services. X, 185
pages. 2006.

Vol. 3995: G. Miiller (Ed.), Emerging Trends in Infor-
mation and Communication Security. XX, 524 pages.
2006.

Vol. 3994: V.N. Alexandrov, G.D. van Albada, PM.A.
Sloot, J. Dongarra, Computational Science — ICCS 2006,
Part IV. XXXV, 1096 pages. 2006.

Vol. 3993: V.N. Alexandrov, G.D. van Albada, PM.A.
Sloot, J. Dongarra, Computational Science — ICCS 2006,
Part ITII. XXXVI, 1136 pages. 2006.

Vol. 3992: V.N. Alexandrov, G.D. van Albada, PM.A.
Sloot, J. Dongarra, Computational Science — ICCS 2006,
Part IT. XXXV, 1122 pages. 2006.

Vol. 3991: V.N. Alexandrov, G.D. van Albada, PM.A.
Sloot, J. Dongarra, Computational Science — ICCS 2006,
Part I. LXXXI, 1096 pages. 2006.

Vol. 3990: J. C. Beck, B.M. Smith (Eds.), Integration
of Al and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems. X, 301 pages.
2006.

Vol. 3989: J. Zhou, M. Yung, F. Bao, Applied Cryptog-
raphy and Network Security. XIV, 488 pages. 2006.

Vol. 3988: A. Beckmann, U. Berger, B. Lowe, J.V. Tucker
(Eds.), Logical Approaches to Computational Barriers.
XYV, 608 pages. 2006.

Vol. 3987: M. Hazas, J. Krumm, T. Strang (Eds.),
Location- and Context-Awareness. X, 289 pages. 2006.

Vol. 3986: K. Stglen, W.H. Winsborough, F. Martinelli,
F. Massacci (Eds.), Trust Management. XIV, 474 pages.
2006.

Vol. 3984: M. Gavrilova, O. Gervasi, V. Kumar, C.J. K.
Tan, D. Taniar, A. Lagana, Y. Mun, H. Choo (Eds.), Com-
putational Science and Its Applications - ICCSA 2006,
Part V. XXV, 1045 pages. 2006.

Vol. 3983: M. Gavrilova, O. Gervasi, V. Kumar, C.J. K.
Tan, D. Taniar, A. Lagana, Y. Mun, H. Choo (Eds.), Com-
putational Science and Its Applications - ICCSA 2006,
Part IV. XXVI, 1191 pages. 2006.

Vol. 3982: M. Gavrilova, O. Gervasi, V. Kumar, C.J. K.
Tan, D. Taniar, A. Lagana, Y. Mun, H. Choo (Eds.), Com-
putational Science and Its Applications - ICCSA 2006,
Part ITI. XXV, 1243 pages. 2006.

Vol. 3981: M. Gavrilova, O. Gervasi, V. Kumar, C.J. K.
Tan, D. Taniar, A. Lagana, Y. Mun, H. Choo (Eds.), Com-
putational Science and Its Applications - ICCSA 2006,
Part II. XX VI, 1255 pages. 2006.

Vol. 3980: M. Gavrilova, O. Gervasi, V. Kumar, C.J. K.
Tan, D. Taniar, A. Lagana, Y. Mun, H. Choo (Eds.), Com-
putational Science and Its Applications - ICCSA 2006,
Part I. LXXV, 1199 pages. 2006.



Preface

On behalf of the Program Committee, it is our pleasure to present to you the
proceedings of the Third GI SIG SIDAR Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA). DIMVA is organized by the
Special Interest Group Security - Intrusion Detection and Response (SIDAR)
of the German Informatics Society (GI) as an annual conference that brings
together experts from throughout and outside Europe to discuss the state of
the art in the areas of intrusion detection, malware detection and vulnerability
assessment.

The DIMVA 2006 Program Committee received 41 submissions from 21 coun-
tries. All submissions were carefully reviewed by Program Committee members
or external experts according to the criteria of scientific novelty, importance to
the field and technical quality. The final selection took place at a Program Com-
mittee meeting held on March 10, 2006, in Berlin, Germany. Eleven full papers
were selected for presentation and publication in the conference proceedings. In
addition, two papers were selected for presentation in the best-practices track of
the conference.

The conference took place on July 13-14, 2006, at the conference center of
the Berlin-Brandenburg Academy of Sciences in Berlin, Germany. The program
featured both theoretical and practical research results, which were grouped into
six sessions. Invited talks were given by two internationally renowned security
experts: John McHugh, Dalhousie University, Canada, and Michael Behringer,
Cisco Systems, France. The conference program was complemented by the Eu-
ropean Capture-the-Flag contest CIPHER (Challenges in Informatics: Program-
ming, Hosting and Exploring), a rump session as well as the graduate workshop
SPRING, which gave PhD students and young researchers an opportunity to
present and discuss their current work and recent results.

We sincerely thank all those who submitted papers as well as the Program
Committee members and the external reviewers for their valuable contributions.

For further details please refer to the DIMVA 2006 website at http://www.
dimva.org/dimva2006.

July 2006 Roland Biischkes
Pavel Laskov



Organization

DIMVA 2006 was organized by the Special Interest Group Security - Intrusion
Detection and Response (SIDAR) of the German Informatics Society (GI), in
cooperation with the IEEE Task Force on Information Assurance.

Organizing Committee

General Chair
Program Chair
Sponsor Chair

Program Committee

Phil Attfield
Thomas Biege
Marc Dacier

Hervé Debar

Sven Dietrich
Toralv Dirro

Ulrich Flegel

Dirk Héger
Bernhard Hammerli
Oliver Heinz

Peter Herrmann
Marc Heuse

Erland Jonsson
Klaus Julisch
Engin Kirda
Hartmut Konig
Klaus-Peter Kossakowski
Christopher Kruegel
Jens Meggers
Michael Meier
Achim Miiller
Martin Naedele
Dirk Schadt

Robin Sommer
Axel Tanner

Marco Thorbriigge
Stephen Wolthusen

Pavel Laskov (Fraunhofer FIRST, Germany)
Roland Biischkes (RWE AG, Germany)
Marc Heuse (n.runs, Germany)

Northwest Security Institute, USA

SUSE LINUX Products GmbH, Germany
Institut Eurécom, France

France Telecom R&D, France

Carnegie Mellon University, USA
McAfee, Germany

University of Dortmund, Germany

BSI, Germany

HTA Luzern, Switzerland

arago AG, Germany

NTNU Trondheim, Norway

n.runs, Germany

Chalmers University of Technology, Sweden
IBM Research, USA

Technical University Vienna, Austria
BTU Cottbus, Germany

DFN-Cert, Germany

Technical University Vienna, Austria
Symantec, USA

University of Dortmund, Germany
Deutsche Telekom Laboratories, Germany
ABB Corporate Research, Switzerland
Computer Associates, Germany
ICIR/ICSI, USA

IBM Research, Switzerland

ENISA, Greece

Gjpvik University College, Norway



VIII Organization

External Reviewers

Magnus Almgren
Nenad Jovanovic
Corrado Leita
Andreas Moser
Sebastian Schmerl
Olivier Thonnard

Steering Committee

Chairs

Members

Chalmers University of Technology, Sweden
Technical University Vienna, Austria
Institut Eurécom, France

Technical University Vienna, Austria

BTU Cottbus, Germany

Institut Eurécom, France

Ulrich Flegel (University of Dortmund,
Germany)

Michael Meier (University of Dortmund,
Germany)

Roland Biischkes (RWE AG, Germany)

Marc Heuse (n.runs, Germany)

Klaus Julisch (IBM Research, USA)

Christopher Kruegel (Technical University
Vienna, Austria)

Sponsoring Institutions

McAfee
w00

TECHNOLOGIESTIFTUNG BERLIN

@ symantec.
Q) runs...




Table of Contents

Code Analysis

Using Type Qualifiers to Analyze Untrusted Integers and Detecting
Security Flaws in C Programs
Ebrima N. Ceesay, Jingmin Zhou, Michael Gertz, Karl Levitt,
Matt BIShoD i o csmsismsmmsps smimssush s msMus iU R aseiani 5o ims 1

Using Static Program Analysis to Aid Intrusion Detection
Manuel Egele, Martin Szydlowski, Engin Kirda,
Christopher Kruegel . .. ... ... e 17

Intrusion Detection

An SVM-Based Masquerade Detection Method with Online Update
Using Co-occurrence Matrix
Liangwen Chen, Masayoshi ATtSUGi . . . ... oo v i 37

Network-Level Polymorphic Shellcode Detection Using Emulation
Michalis Polychronakis, Kostas G. Anagnostakis,
Evangelos P. Markatos ...............oiueiiiinainannnen... 54

Detecting Unknown Network Attacks Using Language Models
Konrad Rieck, Pavel Laskov . .............. ... . uiuiiiannnnin.. 74

Threat Protection and Response

Using Labeling to Prevent Cross-Service Attacks Against
Smart Phones
Collin Mulliner, Giovanni Vigna, David Dagon, Wenke Lee . ........ 91

Using Contextual Security Policies for Threat Response

Hervé Debar, Yohann Thomas, Nora Boulahia-Cuppens,
Frédéric Cuppens . .......... ..o 109

Malware and Forensics

Detecting Self-mutating Malware Using Control-Flow Graph Matching
Danilo Bruschi, Lorenzo Martignoni, Mattia Monga . ............... 129



X Table of Contents

Digital Forensic Reconstruction and the Virtual Security Testbed ViSe
André Arnes, Paul Haas, Giovanni Vigna, Richard A. Kemmerer .... 144

Deployment Scenarios

A Robust SNMP Based Infrastructure for Intrusion Detection and
Response in Tactical MANETSs
Marko Jahnke, Jens Télle, Sascha Lettgen, Michael Bussmann,
Uwe Weddige . . . ... ... e et 164

A Fast Worm Scan Detection Tool for VPN Congestion Avoidance

Arno Wagner, Thomas Dibendorfer, Roman Hiestand,
Christoph Géldi, Bernhard Plattner ................c.oiiiieiaon.. 181

ANLBOr INAexXt: si:nsssimiswsmssasnssms dssnseas s iicsngSinissdemse 195



Using Type Qualifiers to Analyze Untrusted Integers
and Detecting Security Flaws in C Programs

Ebrima N. Ceesay, Jingmin Zhou, Michael Gertz, Karl Levitt, and Matt Bishop

Computer Security Laboratory
University of California at Davis
Davis, CA 95616, USA
{ceesay, zhouji, gertz, levitt, bishop}@cs.ucdavis.edu

Abstract. Incomplete or improper input validation is one of the major sources
of security bugs in programs. While traditional approaches often focus on de-
tecting string related buffer overflow vulnerabilities, we present an approach to
automatically detect potential integer misuse, such as integer overflows in C pro-
grams. Our tool is based on CQual, a static analysis tool using type theory. Our
techniques have been implemented and tested on several widely used open source
applications. Using the tool, we found known and unknown integer related vul-
nerabilities in these applications.

1 Introduction

Most known security vulnerabilities are caused by incomplete or improper input vali-
dation instead of program logic errors. The ICAT vulnerability statistics [1] show for
the past three years that more than 50% of known vulnerabilities in the CVE database
are caused by input validation errors. This percentage is still increasing. Thus, improved
means to detect input validation errors in programs is crucial for improving software
security.

Traditionally, manual code inspection and runtime verification are the major ap-
proaches to check program input. However, these approaches can be very expensive
and have proven ineffective. Recently, there has been increasing interest in static pro-
gram analysis techniques and using them to improve software security. In this paper,
we introduce a type qualifier based approach to perform analysis of user input integers
and to detect potential integer misuse in C programs. Our tool is based on CQual [2],
an extensible type qualifier framework for the C programming language.

An integer is mathematically defined as a real whole number that may be positive,
negative, or equal to zero [3]. We need to qualify this definition to include the fact that
integers are often represented by integer variables in programs. Integer variables are the
same as any other variables in that they are just regions of memory set aside to store
a specific type of data as interpreted by the programmer [4]. Regardless of the data
type intended by the programmer, the computer interprets the data as a sequence of
bits. Integer variables on various systems may have different sizes in terms of allocated
bits. Without loss of generality, we assume that an integer variable is stored in a 32-bit
memory location, where the first bit is used as a sign flag for the integer value.

Integer variables are widely used in programs as counters, pointer offsets and in-
dexes to arrays in order to access memory. If the value of an integer variable comes

R. Biischkes and P. Laskov (Eds.): DIMVA 2006, LNCS 4064, pp. 1-16, 2006.
(© Springer-Verlag Berlin Heidelberg 2006



2 E.N. Ceesay et al.

from untrusted source such as user input, it often results in security vulnerabilities. For
example, recently an increasing number of integer related vulnerabilities have been dis-
covered and exploited [5, 6,7, 8,9]. They are all caused by the misuse of integers input
by a user. The concept of integer misuse like integer overflow has become common
knowledge. Several researchers have studied the problem and proposed solutions like
compiler extension, manual auditing and safe C++ integer classes [4, 10, 11,12, 13, 14].
However, to date there is no tool that statically detects and prevents integer misuse
vulnerabilities in C programs.

Inspired by the classical Biba Integrity Model [15] and Shankar and Johnson’s
tools [3, 16] to detect format string and user/kernel pointer bugs, we have implemented
a tool to detect potential misuse of user input integers in C programs. The idea is simple:
we categorize integer variables into two types: trusted and untrusted. If an untrusted in-
teger variable is used to access memory, an alarm is reported. Our tool is built on top
of CQual, an open source static analyzer based on the theory of type qualifiers [2]. Our
experiments show that the tool can detect potential misuse of integers in C programs.

The rest of the paper is organized as follows: Section 2 gives a brief introduction
to CQual and the theory behind it. Section 3 describes the main idea of our approach
and the development of our tool based on CQual. Section 4 shows the experiments
we have performed and the results. In Section 5 we discuss several issues related to our
approach. Section 6 discusses related work. Finally, Section 7 concludes this paper with
future work.

2 CQual and Type Qualifiers

We developed our tool as an enhancement to CQual. It provides a type-based static
analysis tool for specifying and checking properties of C programs.

The idea of type qualifiers is well-known to C programmers. Type qualifiers add
additional constraints besides standard types to the variables in the program. For exam-
ple, in ANSI C, there is a type qualifier const that attaches the unalteration property to
C variables. However, qualifiers like const are built-in language features of C, which
seriously restrict the scope of their potential applications. CQual allows a user to intro-
duce new type qualifiers. These new type qualifiers specify the customized properties in
which the user is interested. The user then annotates a program with new type qualifiers,
and lets CQual statically check it and decide whether such properties hold throughout
the program. The new type qualifiers introduced in the program are not a part of the C
language, and C compilers can ignore them.

There are two key ideas in CQual: subtyping and type inference.

Subtyping is familiar to programmers who practice object-oriented programming.
For example, in GUI programming, a class DialogWindow is a subclass of class Win-
dow. Then we say DialogWindow is a subtype of Window (written as DialogWindow <
Window). This means that an object of DialogWindow can appear wherever an object
of Window is expected, but not vise versa. Thus, if an object of type Window is pro-
vided to a program where a DialogWindow is expected, it is a potential vulnerability
and the program does not type check.

CQual requires the user to define the subtyping relation of user supplied type qual-
ifiers. The definition appears as a lattice in CQual’s lattice configuration file. For



Using Type Qualifiers to Analyze Untrusted Integers and Detecting Security Flaws 3

example, if we define the lattice for type qualifiers @1 and Q2 as: Q1 < @2, it means
for any type 7, Q17 and Q27 are two new qualified types, and Q17 is a subtype of Q27
(written as Q17 < Q27) [2,3]. Thus, a variable of type Q17 can be used as a variable
of type @27, but not vise versa.

Manually annotating programs with type qualifiers can be expensive and error prone.
Therefore, CQual only requires the user to annotate the programs at several key points
and uses type inference to automatically infer the types of other expressions. For exam-
ple, in the following code fragment, the variable b is not annotated with the qualifier
untrusted, but we can infer this qualifier for b from the assignment statement '.

int $Suntrusted a;
int b;
b = a;

To eliminate the burden of annotating programs across multiple source code files,
CQual provides a prelude file. A user can define fully annotated function declarations
in this file, and let CQual load it at run-time. This is particularly useful when the source
code of certain functions is not available, e.g., the library functions and system calls.
In this situation, CQual is still able to use type inference to infer the qualified types of
expressions from the annotations in the prelude file. For example, in the following
code fragment, after we annotate the C library function scanf in the prelude file,
CQual is able to infer that the variable a is an untrusted integer variable in the program.

prelude:
int scanf (char* fmt, Suntrusted ...);

user_program.c:
int a;
scanf ("%d", &a);

3 Integer Misuse Detection

This section describes how our tool detects potential integer misuse vulnerabilities in
C programs. Inspired by the Biba Integrity Model [15], we propose a security check
tool based on CQual to detect integer misuse. In our tool, security holes are detected by
tracing dependency of variables. Integrity denotes security level. If a value of a variable
is updated by an untrusted variable during the execution of a program, then the integrity
of the variable decreases and the value is regarded as untrusted.

Therefore, we categorize integer variables in programs into two types: trusted and
untrusted. An integer variable is untrusted because either its value is directly fetched
from user input, or the value is propagated from user input. An integer variable is trusted
because its value has no interaction with untrusted integers. In addition, we define pro-
gram points that generate and propagate untrusted integer variables, and program points

' CQual requires the type qualifiers start by a $ sign. For convenience, we ignore the $ sign in
our discussion except for the code fragments.



4 E.N. Ceesay et al.

that should only accept trusted integer variables. For example, suppose each integer pa-
rameter of a function read_file is annotated as trusted. If there is a flow in a program
that an untrusted integer variable is used as a parameter of function read_file, a se-
curity exception is generated, resulting in a alarm.

In order to speed up our efforts and develop a working prototype several assumptions
are made.

3.1 Assumptions

First, we assume that a programmer does not deliberately write erroneous code. This
means that we trust the integer variables prepacked in programs if these internal integer
variables do not have any direct or indirect relations with user input. For example, an
integer variable may be initialized statically in a program and it is used as index to
access an array. There is no interaction between this integer variable and user input. The
assumption is that the programmer knows the exact size of the array being accessed and
the value of this integer variable is not larger than boundary of the array. We believe
that this is a reasonable assumption. In fact, this kind of assumptions are often needed
for many static analysis techniques.

We also assume that integer misuse only happens when untrusted integer variables
are used to access memory. This means it is safe to use untrusted integer variables
in many other situations. This is because, to the best of our knowledge, most integer
related vulnerabilities are only associated to memory access.

To make it clear, user input integers are not limited to the integers given to an appli-
cation by a command line option, or typed in by a user at a program prompt. They also
include many other methods by which a program obtains data from outside the program
itself, such as reading a file or receiving network packets. User input data in the context
of this paper means the data that is not prepackaged within the program.

3.2 New Type Qualifiers

The first step is to define the type qualifiers for integer variables and the lattice of these
type qualifiers in CQual’s 1attice file. Since there are two categories of integer vari-
ables in our method, two type qualifiers are defined: untrusted and trusted. These two
qualifiers have a sub-typing relation of trusted < untrusted. This implies that programs
that accept an untrusted integer variable can also accept a trusted integer variable. How-
ever, the reverse is not true.

Our implementation is not limited to integer variables and we apply the two new
qualifiers to any types of variable in C programs. This is particularly important since in-
tegers are often converted from other types of data, and we keep track of these changes.
As shown in the following code fragment, the integer variable a will become untrusted
after the assignment because the content of string st is untrusted?, and the declaration
of the function atoi in the prelude file specifies that an untrusted string has been
converted to an untrusted integer.

2 Different positions of a qualifier for a pointer variable have different meanings. In particular,
char untrusted =xbuf definesthe memory content pointed by buf as untrusted, char
untrusted buf defines the pointer variable buf itself as untrusted.



Using Type Qualifiers to Analyze Untrusted Integers and Detecting Security Flaws 5

prelude:
int $untrusted atoi (char S$untrusted* string);

user_program.cC:
char Suntrustedx str;
int a;

a = atoil (str);

3.3 Annotations with Type Qualifiers

The second step is to determine the source of untrusted data in programs and how they
propagate in the programs, and annotate the programs using the untrusted qualifier.

By our definition, all user inputs are untrusted. Therefore, we need to identify all lo-
cations that accept data from outside the programs. For programs based on standard C
library and UNIX system calls, the sources of untrusted data include: program argument
array argv, environment variables, standard I/O input, files and network sockets. Pro-
gram argument array argv and environment variables accept user supplied parameters;
standard I/O input is usually used to accept keyboard input from the user; files store the
data from the file systems; and network sockets provide data transmitted over the net-
work. In POSIX compatible systems, most inputs are handled in the same way as files,
so it is unnecessary to distinguish them. Thus identification of user input is relatively
simple: find all C library functions and system calls that are related to files, and pick
those that fetch data. For example, the system call read and C library function fread
both read data from files. We annotate them in the prelude file as illustrated in the
following code fragment. In these declarations, the pointer buf points to a memory
buffer that saves the input data. This memory buffer is annotated as untrusted.

prelude:
int read (int fd, void untrusted* buf, int);
int fread (void untrusted *buf, int, int, FILEx) ;

We focus on a specific type of untrusted data: integer variables. Thus, it is necessary
to determine type conversion from untrusted data to untrusted integers. The standard C
library provides a limited number of functions that can generate integers from strings.
We categorize them into two groups:

1. General purpose library functions that can convert strings into integers. These func-
tions include group of scanf functions, e.g., scanf, fscanf, sscanf, etc..
They use the “%d” format to convert a string into an integer.

2. Single purpose library functions that convert strings into integers. These functions
include atoi, atol, strtol, atof, etc.

In group one, since scanf and £scanf directly read in data from user input, the in-
teger variables fetched are immediately annotated as untrusted. However, since the first
argument of sscanf can either be trusted or untrusted, the annotation of its fetched



6 E.N. Ceesay et al.

variables will depend on the qualifier of the first argument. This difference is shown in
the following code fragment 3:

prelude:
int scanf (charx fmt, untrusted ...);
int fscanf (FILEx, charx fmt, untrusted ...);
int sscanf(char $_1x str, char+ fmt, $_1_2 ...);

The functions in the second group are similar to sscanf: the qualifier of the re-
turned integer variable depends on the qualifier of the input string. This is shown in the
code fragment below:

prelude:
int $_1 atoi (char $_1x s);
long $_1 atol (char $_1x* s);
long $_1 strtol (char $_1x* s);

In addition to C library string functions, there are two other methods that convert
different types of data into integers. One is type cast. For example, a character variable
ch may be cast into an integer variable and be assigned to an integer variable a. In
this case, CQual automatically propagates the type qualifiers of ch to a. In the other
case integers are fetched directly into a memory location of an integer variable. For
example, a program can call function fread to fetch data from a file into a buffer that
is the memory address of an integer variable. In this case, since the content of the buffer
is annotated as untrusted, CQual will infer the integer variable as untrusted.

We must consider the propagation of untrusted data in addition to the source of these
data. CQual uses type inference to automatically infers the propagation of type quali-
fiers between variables through assignments. However, this is often inadequate in prac-
tice. For example, source code of library functions is often unavailable during analysis.
If these functions are not annotated, propagation in libraries would be missed. Such
library functions include strcpy, strncpy, memcpy, memmove, etc.. We must an-
notate these functions as below:

prelude:
char $_1 2+ strcpy(char $_1_ 2%, char $_1x);
char $_1_2x strncpy(char $_1_2x, char $_1%, size_t);
void $_1_2* memcpy(void $_1_2+, void $_1x, size_t);
void $_1_2x memmove (void $_1_2+%, void $_1%, size_t);

After identifying the source of untrusted integer variables, the next step is to de-
termine that all expressions that must accept trusted integers, and make annotation as
needed. To enforce memory safety, all integer variables used as direct or indirect offsets
of a pointer must be trusted integers.

3 ¢$_1 and $_1_2 are polymorphic qualifier variables in CQual. CQual treats each pair of poly-
morphic variables (A, B) as if there was an assignment from A to B when A is a substring
of B.



