 David L. Hicks (Ed)

LNCS 3002

Metainformatics

Graz, Austria, September 2003
Revised Papers

y):; Springer




—+p3-53
H

M £7% David L. Hicks (Bd.)

a N

Metainformatics

International Symposium, MIS 2003
Graz, Austria, September 17-20, 2003
Revised Papers

RS Pl A ] i
I I i G
§ 2

E200401551

Springer




Volume Editor

David L. Hicks

Aalborg University Esbjerg

Department of Software and Media Technology
Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
E-mail: hicks @cs.aue.auc.dk

Library of Congress Control Number: 2004104702

CR Subject Classification (1998): H.4, H.5.1,D.2,H54,D.1,12,K4,17

ISSN 0302-9743
ISBN 3-540-22010-0 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable to prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11008378 06/3142 543210



Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3002




Springer
Berlin
Heidelberg
New York
Hong Kong
London
Milan

Paris

Tokyo



Preface

This volume contains the final proceedings of the Metalnformatics Symposium
2003 (MIS 2003). The event was held September 17-20 on the campus of the
Graz University of Technology in Graz, Austria.

As with previous events in the MIS series, MIS 2003 brought together re-
searchers and practitioners from a wide variety of fields to discuss a broad range
of topics and ideas related to the field of computer science. The contributions
that were accepted to and presented at the symposium are of a wide variety.
They range from theoretical considerations of important metainformatics-related
questions and issues to practical descriptions of approaches and systems that of-
fer assistance in their resolution. I hope you will find the papers contained in
this volume as interesting as the other members of the program committee and
I have.

These proceedings would not have been possible without the help and assis-
tance of many people. In particular I would like to acknowledge the assistance of
Springer-Verlag in Heidelberg, Germany, especially Anna Kramer, the computer
science editor, and Alfred Hofmann, the executive editor for the LNCS series.

February 2004 David L. Hicks



Organization

Organizing Committee

Uffe K. Wiil (Aalborg University Esbjerg, Denmark)
David L. Hicks (Aalborg University Esbjerg, Denmark)
Peter J. Niirnberg (Technical University Graz, Austria)

Conference Secretary

Mathias Lux (Know-Center, Austria)

Program Committee

Chair

Members

David L. Hicks (Aalborg University Esbjerg, Denmark)

Darren Dalcher (Middlesex University, London, UK)
David Millard (University of Southampton, UK)

Peter J. Niirnberg (Technical University Graz, Austria)
Siegfried Reich (Salzburg Research, Austria)

Jessica Rubart (FhG-IPSI, Darmstadt, Germany)

Klaus Tochtermann (Know-Center, Graz, Austria)
Manolis Tzagarakis (University of Patras, Greece)
Weigang Wang (FhG-IPSI, Darmstadt, Germany)

Jim Whitehead (University of California, Santa Cruz, USA)
Uffe K. Wiil (Aalborg University Esbjerg, Denmark)



VIII Organization

Sponsoring Institutions

Technische Universitat Graz, Austria
Styrian Competence Center for Knowledge Management (Know-Center), Austria
Aalborg University Esbjerg, Denmark



Lecture Notes in Computer Science

For information about Vols. 1-2910

please contact your bookseller or Springer-Verlag

Vol. 3042: N. Mitrou, K. Kontovasilis, G.N. Rouskas, I.
Iliadis, L. Merakos (Eds.), NETWORKING 2004, Net-
working Technologies, Services, and Protocols; Perfor-
mance of Computer and Communication Networks; Mo-
bile and Wireless Communications. XXXIII, 1519 pages.
2004.

Vol. 3034: J. Favela, E. Menasalvas, E. Chdvez (Eds.), Ad-
vances in Web Intelligence. XIII, 227 pages. 2004. (Sub-
series LNAI).

Vol. 3027: C. Cachin, J. Camenisch (Eds.), Advances in
Cryptology - EUROCRYPT 2004. XI, 628 pages. 2004.

Vol. 3026: C. Ramamoorthy, R. Lee, K.W. Lee (Eds.),
Software Engineering Research and Applications. XV,
377 pages. 2004.

Vol. 3025: G.A. Vouros, T. Panayiotopoulos (Eds.), Meth-
ods and Applications of Artificial Intelligence. XV, 546
pages. 2004. (Subseries LNAI).

Vol. 3019: R. Wyrzyk owski, J. Dongarra, M. Paprzycki, J.

‘Wasniewski (Eds.), Parallel Processing and Applied Malh—r

ematics. XIX, 1174 pages. 2004.

Vol. 3015: C. Barakat, 1. Pratt (Eds.), Passive and Active
Network Measurement. X1, 300 pages. 2004.

Vol. 3012: K. Kurumatani, S.-H. Chen, A. Ohuchi (Eds.),
Multi-Agnets for Mass User Support. X, 217 pages. 2004.
(Subseries LNAI).

Vol. 3011: J.-C. Régin, M. Rueher (Eds.), Integration of Al
and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems. XI, 415 pages. 2004.

Vol. 3010: K.R. Apt, F. Fages, F. Rossi, P. Szeredi, J.
Vincza (Eds.), Recent Advances in Constraints. VIII, 285
pages. 2004. (Subseries LNAI).

Vol. 3009: F. Bomarius, H. lida (Eds.), Product Focused
Software Process Improvement. XIV, 584 pages. 2004.

Vol. 3007: J.X. Yu, X. Lin, H. Lu, Y. Zhang (Eds.), Ad-
vanced Web Technologies and Applications. XXII, 936
pages. 2004.

Vol. 3006: M. Matsui, R. Zuccherato (Eds.), Selected Ar-
eas in Cryptography. XI, 361 pages. 2004.

Vol. 3005: G.R. Raidl, S. Cagnoni, J. Branke, D.W. Corne,
R. Drechsler, Y. Jin, C.G. Johnson, P. Machado, E. Mar-
chiori, F. Rothlauf, G.D. Smith, G. Squillero (Eds.), Ap-
plications of Evolutionary Computing. XVII, 562 pages.
2004.

Vol. 3004: J. Gottlieb, G.R. Raidl (Eds.), Evolution-

ary Computation in Combinatorial Optimization. X, 241
pages. 2004.

Vol. 3003: M. Keijzer, U.-M. O’Reilly, S.M. Lucas, E.
Costa, T. Soule (Eds.), Genetic Programming. XI, 410
pages. 2004.

Vol. 3002: D.L. Hicks (Ed.), Metainformatics. X, 213
pages. 2004.

Vol. 3001: A. Ferscha, F. Mattern (Eds.), Pervasive Com-
puting. XVII, 358 pages. 2004.

Vol. 2999: E.A. Boiten, J. Derrick, G. Smith (Eds.), Inte-
grated Formal Methods. X1, 541 pages. 2004.

Vol. 2998: Y. Kameyama, P.J. Stuckey (Eds.), Functional
and Logic Programming. X, 307 pages. 2004.

Vol. 2997: S. McDonald, J. Tait (Eds.), Advances in Infor-
mation Retrieval. XIII, 427 pages. 2004.

Vol. 2996: V. Diekert, M. Habib (Eds.), STACS 2004. X VI,
658 pages. 2004.

Vol. 2995: C. Jensen, S. Poslad, T. Dimitrakos (Eds.), Trust
Management. XIII, 377 pages. 2004.

Vol. 2994: E. Rahm (Ed.), Data Integration in the Life
Sciences. X, 221 pages. 2004. (Subseries LNBI).

Vol. 2993: R. Alur, G.J. Pappas (Eds.), Hybrid Systems:
Computation and Control. XII, 674 pages. 2004.

Vol. 2992: E. Bertino, S. Christodoulakis, D. Plexousakis,
V. Christophides, M. Koubarakis, K. Béhm, E. Ferrari
(Eds.), Advances in Database Technology - EDBT 2004.
XVIII, 877 pages. 2004.

Vol. 2991: R. Alt, A. Frommer, R.B. Kearfott, W. Luther
(Eds.), Numerical Software with Result Verification. X,
315 pages. 2004.

Vol. 2989: S. Graf, L. Mounier (Eds.), Model Checking
Software. X, 309 pages. 2004.

Vol. 2988: K. Jensen, A. Podelski (Eds.), Tools and Algo-
rithms for the Construction and Analysis of Systems. XIV,
608 pages. 2004.

Vol. 2987: 1. Walukiewicz (Ed.), Foundations of Software
Science and Computation Structures. XIII, 529 pages.
2004.

Vol. 2986: D. Schmidt (Ed.), Programming Languages and
Systems. XII, 417 pages. 2004.

Vol. 2985: E. Duesterwald (Ed.), Compiler Construction.
X, 313 pages. 2004.

Vol. 2984: M. Wermelinger, T. Margaria-Steffen (Eds.),
Fundamental Approaches to Software Engineering. XII,
389 pages. 2004.

Vol. 2983: S. Istrail, M.S. Waterman, A. Clark (Eds.),
Computational Methods for SNPs and Haplotype Infer-
ence. IX, 153 pages. 2004. (Subseries LNBI).

Vol. 2982: N. Wakamiya, M. Solarski, J. Sterbenz (Eds.),
Active Networks. XI, 308 pages. 2004~

Vol. 2981: C. Miiller-Schloer, T. Ungerer, B. Bauer (Eds.),
Organic and Pervasive Computing — ARCS 2004. X1, 339
pages. 2004.

Vol. 2980: A. Blackwell, K. Marriott, A. Shimojima (Eds.),
Diagrammatic Representation and Inference. XV, 448
pages. 2004. (Subseries LNAI).



Vol. 2979: 1. Stoica, Stateless Core: A Scalable Approach
for Quality of Service in the Internet. XVI, 219 pages.
2004.

Vol. 2978: R. Groz, R.M. Hierons (Eds.), Testing of Com-
municating Systems. XII, 225 pages. 2004.

Vol. 2977: G. Di Marzo Serugendo, A. Karageorgos, O.F.
Rana, F. Zambonelli (Eds.), Engineering Self-Organising
Systems. X, 299 pages. 2004. (Subseries LNAI).

Vol. 2976: M. Farach-Colton (Ed.), LATIN 2004: Theo-
retical Informatics. XV, 626 pages. 2004.

Vol. 2973: Y. Lee, J. Li, K-Y. Whang, D. Lee (Eds.),
Database Systems for Advanced Applications. XXIV, 925
pages. 2004.

Vol. 2972: R. Monroy, G. Arroyo-Figueroa, L.E. Sucar, H.
Sossa (Eds.), MICAI 2004: Advances in Artificial Intelli-
gence. XVII, 923 pages. 2004. (Subseries LNAI).

Vol. 2971:J.1. Lim, D.H. Lee (Eds.), Information Security
and Cryptology -ICISC 2003. XI, 458 pages. 2004.

Vol. 2970: F. Ferndndez Rivera, M. Bubak, A. G6mez Tato,
R. Doallo (Eds.), Grid Computing. X1, 328 pages. 2004.

Vol. 2968: J. Chen, S. Hong (Eds.), Real-Time and Em-
bedded Computing Systems and Applications. XIV, 620
pages. 2004.

Vol. 2967: S. Melnik, Generic Model Management. XX,
238 pages. 2004.

Vol. 2966: F.B. Sachse, Computational Cardiology. X VIII,
322 pages. 2004.

Vol. 2965: M.C. Calzarossa, E. Gelenbe, Performance
Tools and Applications to Networked Systems. VIII, 385
pages. 2004.

Vol. 2964: T. Okamoto (Ed.), Topics in Cryptology — CT-
RSA 2004. X1, 387 pages. 2004.

Vol. 2963: R. Sharp, Higher Level Hardware Synthesis.
XVI, 195 pages. 2004.

Vol. 2962: S. Bistarelli, Semirings for Soft Constraint
Solving and Programming. XII, 279 pages. 2004.

Vol. 2961: P. Eklund (Ed.), Concept Lattices. IX, 411
pages. 2004. (Subseries LNAI).

Vol. 2960: P.D. Mosses (Ed.), CASL Reference Manual.
XVII, 528 pages. 2004.

Vol. 2958: L. Rauchwerger (Ed.), Languages and Compil-
ers for Parallel Computing. X1, 556 pages. 2004.

Vol. 2957: P. Langendoerfer, M. Liu, . Matta, V. Tsaous-
sidis (Eds.), Wired/Wireless Internet Communications.
X1, 307 pages. 2004.

Vol. 2956: A. Dengel, M. Junker, A. Weisbecker (Eds.),
Reading and Learning. XII, 355 pages. 2004.

Vol. 2954: F. Crestani, M. Dunlop, S. Mizzaro (Eds.), Mo-
bile and Ubiquitous Information Access. X, 299 pages.
2004.

Vol. 2953: K. Konrad, Model Generation for Natural Lan-
guage Interpretation and Analysis. XIII, 166 pages. 2004.
(Subseries LNAI).

Vol. 2952: N. Guelfi, E. Astesiano, G. Reggio (Eds.), Sci-
entific Engineering of Distributed Java Applications. X,
157 pages. 2004.

Vol. 2951: M. Naor (Ed.), Theory of Cryptography. XI,
523 pages. 2004.

Vol. 2949: R. De Nicola, G. Ferrari, G. Meredith (Eds.),
Coordination Models and Languages. X, 323 pages. 2004.

Vol. 2948: G.L. Mullen, A. Poli, H. Stichtenoth (Eds.),
Finite Fields and Applications. VIII, 263 pages. 2004.

Vol. 2947: F. Bao, R. Deng, J. Zhou (Eds.), Public Key
Cryptography — PKC 2004. X1, 455 pages. 2004.

Vol. 2946: R. Focardi, R. Gorrieri (Eds.), Foundations of
Security Analysis and Design II. VII, 267 pages. 2004.

Vol. 2943: J. Chen, J. Reif (Eds.), DNA Computing. X,
225 pages. 2004.

Vol. 2941: M. Wirsing, A. Knapp, S. Balsamo (Eds.), Rad-
ical Innovations of Software and Systems Engineering in
the Future. X, 359 pages. 2004.

Vol. 2940: C. Lucena, A. Garcia, A. Romanovsky, J. Cas-
tro, P.S. Alencar (Eds.), Software Engineering for Multi-
Agent Systems II. XII, 279 pages. 2004.

Vol. 2939: T. Kalker, L. Cox, Y.M. Ro (Eds.), Digital
Watermarking. XII, 602 pages. 2004.

Vol. 2937: B. Steffen, G. Levi (Eds.), Verification, Model
Checking, and Abstract Interpretation. XI, 325 pages.
2004.

Vol. 2936: P. Liardet, P. Collet, C. Fonlupt, E. Lutton, M.
Schoenauer (Eds.), Artificial Evolution. XIV, 410 pages.
2004.

Vol. 2934: G. Lindemann, D. Moldt, M. Paolucci (Eds.),
Regulated Agent-Based Social Systems. X, 301 pages.
2004. (Subseries LNAI).

Vol. 2930: F. Winkler (Ed.), Automated Deduction in Ge-
ometry. VII, 231 pages. 2004. (Subseries LNAI).

Vol. 2929: H. de Swart, E. Orlowska, G. Schmidt, M.
Roubens (Eds.), Theory and Applications of Relational
Structures as Knowledge Instruments. VII, 273 pages.
2003.

Vol. 2926: L. van Elst, V. Dignum, A. Abecker (Eds.),

. Agent-Mediated Knowledge Management. X1, 428 pages.

2004. (Subseries LNAI).

Vol. 2923: V. Lifschitz, I. Niemel4 (Eds.), Logic Program-
ming and Nonmonotonic Reasoning. IX, 365 pages. 2004.
(Subseries LNAI).

Vol. 2919: E. Giunchiglia, A. Tacchella (Eds.), Theory and
Applications of Satisfiability Testing. X1, 530 pages. 2004.

Vol. 2917: E. Quintarelli, Model-Checking Based Data
Retrieval. XVI, 134 pages. 2004.

Vol. 2916: C. Palamidessi (Ed.), Logic Programming. X1I,
520 pages. 2003.

Vol. 2915: A. Camurri, G. Volpe (Eds.), Gesture-Based
Communication in Human-Computer Interaction. XIII,
558 pages. 2004. (Subseries LNAI).

Vol. 2914: P.K. Pandya, J. Radhakrishnan (Eds.), EST TCS
2003: Foundations of Software Technology and Theoret-
ical Computer Science. XIII, 446 pages. 2003.

Vol. 2913: T.M. Pinkston, V.K. Prasanna (Eds.), High Per-
formance Computing - HiPC 2003. XX, 512 pages. 2003.
(Subseries LNAI).

Vol. 2911: TM.T. Sembok, H.B. Zaman, H. Chen, S.R.
Urs, S.H. Myaeng (Eds.), Digital Libraries: Technology
and Management of Indigenous Knowledge for Global
Access. XX, 703 pages. 2003.



Table of Contents

A Grand Unified Theory for Structural Computing . .................... 1
Peter J. Nurnberg, Uffe K. Wiil, and David L. Hicks

A Meta-modeling Approach to Ontological Engineering:
DL-Workbench Platform . ........ccoiiiiiiie ittt iniaenvnnn 17
Mikhail Kazakov and Habib Abdulrab

Context Modeling for Software Design ............. ... .. .. . oot 34
Tobias Berka

On the Foundations of Computing Science ............... ... .. ... .. 46
Ulisses Ferreira

Toward a Structure Domain Interoperability Space ..................... 66
Claus Atzenbeck, Uffe K. Wiil, and David L. Hicks

An Efficient E-mail Monitoring System

for Detecting Proprietary Information Outflow

Using Broad Concept Learning ..., 72
Byungyeon Hwang and Bogju Lee

Interface Design — Use of Audio as an Output ......................... 79
Kirstin Lyon and Peter J. Nirnberg

Developer Support in Open Hypermedia Systems:
Towards a Hypermedia Service Discovery Mechanism ................... 89
Nikos Karousos and Ippokratis Pandis

A Structural Computing Model for Dynamic Service-Based Systems ... ... 100
Peter King, Marc Nanard, Jocelyne Nanard, and Gustavo Rossi

Structuring Cooperative Spaces:
From Static Templates to Self-Organization ........................... 119
Jessica Rubart and Thorsten Hampel

Dynamic Personalization in Knowledge-Based Systems
from a Structural Viewpoint................ it 126
Armin Ulbrich, Dolly Kandpal, and Klaus Tochtermann

Some Notes on Behavior in Structural Computing...................... 143
Michalis Vaitis, Manolis Tzagarakis, Konstantinos Grivas,

and FEleftherios Chrysochoos



X Table of Contents
Strategies for Hypermedia Design Modeling ........................... 150
Ahmet Sikici and N. Yasemin Topaloglu

The EXTERNAL Experience on System and Enterprise Integration .. .... 158
Weigang Wang, Frank Lillehagen, Dag Karlsen, Svein G. Johnsen,
John Krogstie, Jessica Rubart, and Jorg M. Haake

Interaction with Information Technology Seen as Communication ........ 175
Frank Wagner

Meta-analysis and Reflection as System Development Strategies.......... 178
Christopher Landauver and Kirstie L. Bellman

A Dynamic Aspect Weaver over the .NET Platform .................... 197
Luis Vinuesa and Francisco Ortin

Author Index ... 213



A Grand Unified Theory
for Structural Computing

Peter J. Niirnberg*, Uffe K. Wiil, and David L. Hicks

Department of Computer Science, Aalborg University Esbjerg
Niels Bohrs Vej 8, DK-6700 Esbjerg, Denmark
{pnuern,ukwiil ,hicks}@cs.aue.auc.dk

1 Introduction

Structural computing, in one sense, seeks to unify the notions of data and struc-
ture under a synthesized abstraction, by which data and structure become views
to be applied as the need or desire arises. Indeed, one way of looking at struc-
tural computing is that the notions of data and structure are contextual, not
essential. Any entity may be data to one person (application, agent, whatever)
at one moment, and structure to another. Data and structure are matters of in-
terpretation, not essence. What exactly this has bought us is discussed at length
elsewhere 7,10, 11].

However, despite the presence of the term “computing,” structural comput-
ing research has left behavior (computation) out in the cold. Many agree that
“behavior is important” [2,13], but exactly how this abstraction should be inte-
grated into the broader picture is unclear.

In this paper, we embark on a thought experiment: how can the notion of
behavior be integrated into the data/structure synthesis, to derive a “grand
unified abstraction?” Is behavior, like data and structure, non-essential — merely
the product of a view to be applied as the need arises? If so, how can unifying
data, structure, and behavior potentially benefit us?

It must be said up front that this thought experiment is in its early stages.
Nonetheless, we present this work in the belief that it is sufficiently mature to
benefit from active discussion within this field. Furthermore, we feel that the
applications to metainformatics are clear: if this unification can succeed and is
beneficial, it stands to impact a broad variety of fields, and potentially draw in
researchers from hereto “foreign” fields such as computational theory.

The remainder of the paper is organized as follows: Section 2 presents a
review of the data/structure unification undertaken thus far within structural
computing. Section 3 describes one extremely simple (but Turing complete) be-
havior model and a prototypic implementation of this model in Java. Section 4
considers the synthesis of behavior and the data/structure abstraction. Section 5
considers some connections between the work presented here and other fields.

* The first author kindly acknowledges the Styrian Competence Center for Knowledge
Management Research for partially supporting the work presented here. Please see
http://www.know-center.at/ for more details.

D.L. Hicks (Ed.): MIS 2003, LNCS 3002, pp. 1-16, 2004.
© Springer-Verlag Berlin Heidelberg 2004



2 Peter J. Niirnberg, Uffe K. Wiil, and David L. Hicks

Section 6 concludes the paper with discussions of future directions for this re-
search.

2 Data/Structure Synthesis

In (8], it is claimed that hypermedia is about structure, but that most hypermedia
systems treat structure as a derived abstraction. Data underlies most hypermedia
systems. Structure is something built out of data. In this view of the world
(prevalent not only in hypermedia but in almost every field) data is atomic.
Some instances of data abstractions might be interpreted by some systems in
certain ways. This implies that, at the backend, what is needed are generalized
data management systems. Infrastructure that manages data is sufficient for
hypermedia (and, indeed, any) “higher-level” application.

Structural computing disagrees with this assertion. Hypermedia is not just
an application, like spreadsheet building or document management. It is an
expression of an epistemological point of view — that all knowledge work is
structuring work. Since hypermedia is about structure, it represents not as much
an application as a radical rethink of the way systems (intended for human users,
anyway) should be designed. Such systems need to account for the omnipresence
of structure. Furthermore, this structure is arbitrary in nature. Associations
built by humans among concepts are arbitrary (not regular in an obviously
formalizable and computable way). Systems should support this non-formal,
non-computable, arbitrary structure at the backend. Doing this is an attempt to
make the technology of the computer fit the way people think, instead of forcing
people to think as the computer is designed.

This has certain fairly radical implications for the way in which structure and
data are related to one another. In the traditional “data-centric” view of systems
construction, structure is an abstraction generated at the middleware layer at
runtime. Data is an essential characteristic of all entities managed by systems.
In the structural computing view, both data and structure are runtime views.
As such, any entity may stand in relation to other entities, or even represent
relations among other entities, at any time. Indeed, system infrastructure must
assume that any entity is at all times (at least potentially) both structured and
structuring.

What does this mean? Examples of interpretations of the structured and
structuring roles (or in short, the structural nature) of entities are numerous. A
short list here can serve to refresh the reader’s memory: versioning; notification;
access control; and, concurrency control — all have been shown to be non-trivially
more complicated when managed entities are handled structurally.

What is the “atomic” abstraction in structural computing systems? Tradi-
tionally, different research groups have named this abstraction differently, but
most names imply a highly structural view: abstract structural element [16] or
structural unit [18] are two fine examples. This belies the fact, however, that the
atomic abstraction is more correctly seen as a synthesis of data and structure.
It is not as if structural interpretations of, say, versioning replace data inter-



A Grand Unified Theory for Structural Computing 3

pretations, but rather that they augment them. In this view, more appropriate
names for the basic atomic abstraction might be the “dataic/structural atom”
or “dataic/structural unit” — with the obvious caveat that this is, to say the
least, awkward. Nonetheless, the point is clear: structural computing advocates
a data/structure synthesis as the system atomic abstraction to be managed at
the infrastructure layer of systems.

There are benefits that are immediately derived from such a viewpoint. In-
deed, much structural computing research focuses on these benefits rather than
any theoretical reasoning for such system constructions in the first place [1,17].
Some researchers have gone so far as to claim that finding and articulating such
benefits should be the main priority of the field [3]. Such claimed benefits usu-
ally fall into one of three categories: omnipresence of structural support (at the
middleware layer) — the so-called “convenience” arguments; efficiency of struc-
tural operation implementation — the aptly named “efficiency” arguments; or,
the guaranteed basic structural interpretation of entities — the so-called “inter-
operability” arguments.

Convenience arguments, such as those presented in [1], claim that by pro-
viding structural abstractions at the infrastructure layer, middleware services,
such as software management systems, that export structural abstractions (and
operations) are more easily (and consistently) implemented.

Efficiency arguments, such as those presented in [9], claim that by sinking
the implementation of structural operations into the infrastructure, certain op-
erations may execute more efficiently, even operation that are seemingly (or
traditionally viewed as) non-structural, such as prefetching and caching.

Interoperability arguments, such as those presented in [6], claim that by
guaranteeing some basic structural interpretation to be present at all times in
the infrastructure, recasting of structural entities specialized for one applica-
tion domain (e.g., navigational hypermedia) into those for another (e.g., spatial
hypermedia) may be made easier.

Behind all of these arguments lies the basic claim that the data/structure
synthesis is a better atomic abstraction that a solely data-oriented abstraction.
Yet despite the nearly universal claim of the fundamental importance of behav-
jor, the nearly exclusive focus on the data/structure synthesis has left behavior
as a “residual,” an unanalyzed concept of second-class importance.

In this paper, then, we make the following claim: analogous to the rather
curious second-class, derived status of structure in hypermedia (a field ostensibly
about structure), behavior occupies a second-class, derived status in structural
computing (a field arguably as much about behavior as structure or data). Here,
we look at some first steps toward remedying this state of affairs.

3 OISC — A Simple Turing-Complete Behavior Model

In this section, we present a very simple behavior model, which has the desirable
characteristic of being Turing-complete. It is not yet clear whether this is a
sufficient behavior model in practice (almost certainly this is not the case), but



4 Peter J. Niirnberg, Uffe K. Wiil, and David L. Hicks

it clearly is sufficient in theory. Any theoretically complete model can serve as a
basis for more practical and useful models through transformation of these more
complex models into their simple counterpart.

3.1 Defining subleq

OISC stands for “one instruction set computer” — analogous to the well-known
CISC and RISC abbreviations [19]. The OISC instruction “set” indeed consists
of only one instruction, but is nonetheless Turing-complete!. This instruction
takes three parameters and is concisely described as “subtract and branch on
result less than or equal to zero,” abbreviated subleq a b c. (Hereafter, both
the instruction set and any language based upon it are referred to as “subleq.”)
In “C” style pseudocode, this instruction does the following:

*b-= *a;
if (xb <= 0) goto c;

Oddly enough, subleq “programs” consist of parameters only, since no in-
struction operation codes are needed. “Well-formed” subleq programs, then,
consist of triples of parameters, in which the first two parameters name lo-
cations to be manipulated algebraically, and the third names a potential jump
location. We don’t define “well-formed” here, but intuitively, we mean programs
for which no parameter operates both as a algebraic location and as a jump
location (though of course nothing prevents this from potentially being the case
in arbitrary subleq programs.)

Like most minimal Turing-complete languages, subleq isn’t very useful by it-
self. For example, there is no “halt” instruction, meaning the “program counter”
(tape head) must be run off the end of the tape to halt the machine. There are
no I/O instructions either, meaning the “memory” (tape) on which a program
runs must be initialized (somehow). These, theoretically speaking, are details,
however.

For simplicity and brevity, the subleq a b is to be interpreted as implying
a “c” value that corresponds to whatever value to the PC would be if the jump
condition failed. That is, the shorthand subleq a b implies that no jump is
executed, regardless of the value of “b.”

3.2 A Prototypic Implementation of subleq

We have built a prototypic implementation of a subleq virtual machine and a
simple operating system and assembler for use with this virtual machine to exper-
iment with subleq. This implementation is available under the GNU GPL from
the Department of Computer Science at Aalborg University Esbjerg. Please see
<http://cs.aue.auc.dk/"pnuern/subleq/> for more details. A description
of this implementation is presented here.

! The proof of this is left as an exercise for the reader!



A Grand Unified Theory for Structural Computing 5

Virtual Machine. There is little to say about the virtual machine (VM) - it
has only one instruction! When a VM instance is created, it has a fixed amount
of memory. This memory is conceptually a one-dimensional array of integers,
initially set to all zeroes. Program images (integer arrays) may be loaded into
memory at arbitrary locations. The VM is able to execute the subleq instruction
at any arbitrary given location in memory and supports “core dumping” for any
range of memory. The VM will halt if asked to execute subleq at any “out of
bounds” memory location.

Operating System. The operating system (OS) is substantially more compli-
cated than the VM. Strictly speaking, the OS is an operating system “simula-
tion,” since it is neither implemented in subleq, nor runs on the VM. Nonetheless,
it performs many of the functions of a very simple OS, and “appears” as an OS
for the subleq VM to subleq programmers.

The basic abstraction of the OS is that of process, which consists of zero (sic)
or more instances of the thread abstraction. A process is defined by: a range in
memory; a set of threads; a name; and, a symbol table. A thread is defined by
a program counter. Note that these abstractions are somewhat “poorer” than
traditional notions of these same terms. Processes are not, for example, divided
into text, data, stack, and heap sections. Processes may freely(!) modify their
own “text” section memory, have fixed sizes (no dynamic allocation), and are
responsible for all “free space” management themselves. Threads do not have
register sets (there are no registers in the subleq VM), call stacks (these, also,
do not exist in the VM) or any thread specific data. Processes with zero threads
are also non-traditional — such “processes” are essentially global data.

The OS (intentionally) enforces no protection for process memory (with ex-
ceptions, see below). Instructions may freely reference memory locations outside
the process (memory range) in which the instruction itself is executed.

There are two “special” processes — the /O process and the system process.
In the current implementation, both are 48 integers large, and are automatically
loaded into locations 0-47 and 48-95, respectively. Program counter values in-
side these processes’ memory space cause the VM to halt. (Technically, the OS
translates all instructions that attempt to set the PC to a location inside these
processes to “equivalent” instructions that set the PC to —1, which will cause
the VM to halt.) These special processes are explained in more detail below.

I/0 Process. Read and write operations to I/O locations behave specially. The
48 locations of the I/O block are to be interpreted as references to (up to) 48
I/O streams. The first 3 locations in the I/O block are hardwired to standard in,
standard out, and standard error, respectively. References to I/O locations in the
“a” parameter location result in a “read” from the appropriate I/O stream — the
value read substitutes for the the value stored at “a”. References to I/O block
locations in the “b” parameter location result in a “write” of the “a” value
to the appropriate I/O stream. More explicitly, consider the following subleq

instructions and their “C” pseudocode counterparts:



