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Preface

This volume contains the final proceedings of the Metalnformatics Symposium
2003 (MIS 2003). The event was held September 17-20 on the campus of the
Graz University of Technology in Graz, Austria.

As with previous events in the MIS series, MIS 2003 brought together re-
searchers and practitioners from a wide variety of fields to discuss a broad range
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I have.

These proceedings would not have been possible without the help and assis-
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A Grand Unified Theory
for Structural Computing

Peter J. Niirnberg*, Uffe K. Wiil, and David L. Hicks

Department of Computer Science, Aalborg University Esbjerg
Niels Bohrs Vej 8, DK-6700 Esbjerg, Denmark
{pnuern,ukwiil ,hicks}@cs.aue.auc.dk

1 Introduction

Structural computing, in one sense, seeks to unify the notions of data and struc-
ture under a synthesized abstraction, by which data and structure become views
to be applied as the need or desire arises. Indeed, one way of looking at struc-
tural computing is that the notions of data and structure are contextual, not
essential. Any entity may be data to one person (application, agent, whatever)
at one moment, and structure to another. Data and structure are matters of in-
terpretation, not essence. What exactly this has bought us is discussed at length
elsewhere 7,10, 11].

However, despite the presence of the term “computing,” structural comput-
ing research has left behavior (computation) out in the cold. Many agree that
“behavior is important” [2,13], but exactly how this abstraction should be inte-
grated into the broader picture is unclear.

In this paper, we embark on a thought experiment: how can the notion of
behavior be integrated into the data/structure synthesis, to derive a “grand
unified abstraction?” Is behavior, like data and structure, non-essential — merely
the product of a view to be applied as the need arises? If so, how can unifying
data, structure, and behavior potentially benefit us?

It must be said up front that this thought experiment is in its early stages.
Nonetheless, we present this work in the belief that it is sufficiently mature to
benefit from active discussion within this field. Furthermore, we feel that the
applications to metainformatics are clear: if this unification can succeed and is
beneficial, it stands to impact a broad variety of fields, and potentially draw in
researchers from hereto “foreign” fields such as computational theory.

The remainder of the paper is organized as follows: Section 2 presents a
review of the data/structure unification undertaken thus far within structural
computing. Section 3 describes one extremely simple (but Turing complete) be-
havior model and a prototypic implementation of this model in Java. Section 4
considers the synthesis of behavior and the data/structure abstraction. Section 5
considers some connections between the work presented here and other fields.

* The first author kindly acknowledges the Styrian Competence Center for Knowledge
Management Research for partially supporting the work presented here. Please see
http://www.know-center.at/ for more details.

D.L. Hicks (Ed.): MIS 2003, LNCS 3002, pp. 1-16, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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Section 6 concludes the paper with discussions of future directions for this re-
search.

2 Data/Structure Synthesis

In (8], it is claimed that hypermedia is about structure, but that most hypermedia
systems treat structure as a derived abstraction. Data underlies most hypermedia
systems. Structure is something built out of data. In this view of the world
(prevalent not only in hypermedia but in almost every field) data is atomic.
Some instances of data abstractions might be interpreted by some systems in
certain ways. This implies that, at the backend, what is needed are generalized
data management systems. Infrastructure that manages data is sufficient for
hypermedia (and, indeed, any) “higher-level” application.

Structural computing disagrees with this assertion. Hypermedia is not just
an application, like spreadsheet building or document management. It is an
expression of an epistemological point of view — that all knowledge work is
structuring work. Since hypermedia is about structure, it represents not as much
an application as a radical rethink of the way systems (intended for human users,
anyway) should be designed. Such systems need to account for the omnipresence
of structure. Furthermore, this structure is arbitrary in nature. Associations
built by humans among concepts are arbitrary (not regular in an obviously
formalizable and computable way). Systems should support this non-formal,
non-computable, arbitrary structure at the backend. Doing this is an attempt to
make the technology of the computer fit the way people think, instead of forcing
people to think as the computer is designed.

This has certain fairly radical implications for the way in which structure and
data are related to one another. In the traditional “data-centric” view of systems
construction, structure is an abstraction generated at the middleware layer at
runtime. Data is an essential characteristic of all entities managed by systems.
In the structural computing view, both data and structure are runtime views.
As such, any entity may stand in relation to other entities, or even represent
relations among other entities, at any time. Indeed, system infrastructure must
assume that any entity is at all times (at least potentially) both structured and
structuring.

What does this mean? Examples of interpretations of the structured and
structuring roles (or in short, the structural nature) of entities are numerous. A
short list here can serve to refresh the reader’s memory: versioning; notification;
access control; and, concurrency control — all have been shown to be non-trivially
more complicated when managed entities are handled structurally.

What is the “atomic” abstraction in structural computing systems? Tradi-
tionally, different research groups have named this abstraction differently, but
most names imply a highly structural view: abstract structural element [16] or
structural unit [18] are two fine examples. This belies the fact, however, that the
atomic abstraction is more correctly seen as a synthesis of data and structure.
It is not as if structural interpretations of, say, versioning replace data inter-
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pretations, but rather that they augment them. In this view, more appropriate
names for the basic atomic abstraction might be the “dataic/structural atom”
or “dataic/structural unit” — with the obvious caveat that this is, to say the
least, awkward. Nonetheless, the point is clear: structural computing advocates
a data/structure synthesis as the system atomic abstraction to be managed at
the infrastructure layer of systems.

There are benefits that are immediately derived from such a viewpoint. In-
deed, much structural computing research focuses on these benefits rather than
any theoretical reasoning for such system constructions in the first place [1,17].
Some researchers have gone so far as to claim that finding and articulating such
benefits should be the main priority of the field [3]. Such claimed benefits usu-
ally fall into one of three categories: omnipresence of structural support (at the
middleware layer) — the so-called “convenience” arguments; efficiency of struc-
tural operation implementation — the aptly named “efficiency” arguments; or,
the guaranteed basic structural interpretation of entities — the so-called “inter-
operability” arguments.

Convenience arguments, such as those presented in [1], claim that by pro-
viding structural abstractions at the infrastructure layer, middleware services,
such as software management systems, that export structural abstractions (and
operations) are more easily (and consistently) implemented.

Efficiency arguments, such as those presented in [9], claim that by sinking
the implementation of structural operations into the infrastructure, certain op-
erations may execute more efficiently, even operation that are seemingly (or
traditionally viewed as) non-structural, such as prefetching and caching.

Interoperability arguments, such as those presented in [6], claim that by
guaranteeing some basic structural interpretation to be present at all times in
the infrastructure, recasting of structural entities specialized for one applica-
tion domain (e.g., navigational hypermedia) into those for another (e.g., spatial
hypermedia) may be made easier.

Behind all of these arguments lies the basic claim that the data/structure
synthesis is a better atomic abstraction that a solely data-oriented abstraction.
Yet despite the nearly universal claim of the fundamental importance of behav-
jor, the nearly exclusive focus on the data/structure synthesis has left behavior
as a “residual,” an unanalyzed concept of second-class importance.

In this paper, then, we make the following claim: analogous to the rather
curious second-class, derived status of structure in hypermedia (a field ostensibly
about structure), behavior occupies a second-class, derived status in structural
computing (a field arguably as much about behavior as structure or data). Here,
we look at some first steps toward remedying this state of affairs.

3 OISC — A Simple Turing-Complete Behavior Model

In this section, we present a very simple behavior model, which has the desirable
characteristic of being Turing-complete. It is not yet clear whether this is a
sufficient behavior model in practice (almost certainly this is not the case), but
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it clearly is sufficient in theory. Any theoretically complete model can serve as a
basis for more practical and useful models through transformation of these more
complex models into their simple counterpart.

3.1 Defining subleq

OISC stands for “one instruction set computer” — analogous to the well-known
CISC and RISC abbreviations [19]. The OISC instruction “set” indeed consists
of only one instruction, but is nonetheless Turing-complete!. This instruction
takes three parameters and is concisely described as “subtract and branch on
result less than or equal to zero,” abbreviated subleq a b c. (Hereafter, both
the instruction set and any language based upon it are referred to as “subleq.”)
In “C” style pseudocode, this instruction does the following:

*b-= *a;
if (xb <= 0) goto c;

Oddly enough, subleq “programs” consist of parameters only, since no in-
struction operation codes are needed. “Well-formed” subleq programs, then,
consist of triples of parameters, in which the first two parameters name lo-
cations to be manipulated algebraically, and the third names a potential jump
location. We don’t define “well-formed” here, but intuitively, we mean programs
for which no parameter operates both as a algebraic location and as a jump
location (though of course nothing prevents this from potentially being the case
in arbitrary subleq programs.)

Like most minimal Turing-complete languages, subleq isn’t very useful by it-
self. For example, there is no “halt” instruction, meaning the “program counter”
(tape head) must be run off the end of the tape to halt the machine. There are
no I/O instructions either, meaning the “memory” (tape) on which a program
runs must be initialized (somehow). These, theoretically speaking, are details,
however.

For simplicity and brevity, the subleq a b is to be interpreted as implying
a “c” value that corresponds to whatever value to the PC would be if the jump
condition failed. That is, the shorthand subleq a b implies that no jump is
executed, regardless of the value of “b.”

3.2 A Prototypic Implementation of subleq

We have built a prototypic implementation of a subleq virtual machine and a
simple operating system and assembler for use with this virtual machine to exper-
iment with subleq. This implementation is available under the GNU GPL from
the Department of Computer Science at Aalborg University Esbjerg. Please see
<http://cs.aue.auc.dk/"pnuern/subleq/> for more details. A description
of this implementation is presented here.

! The proof of this is left as an exercise for the reader!
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Virtual Machine. There is little to say about the virtual machine (VM) - it
has only one instruction! When a VM instance is created, it has a fixed amount
of memory. This memory is conceptually a one-dimensional array of integers,
initially set to all zeroes. Program images (integer arrays) may be loaded into
memory at arbitrary locations. The VM is able to execute the subleq instruction
at any arbitrary given location in memory and supports “core dumping” for any
range of memory. The VM will halt if asked to execute subleq at any “out of
bounds” memory location.

Operating System. The operating system (OS) is substantially more compli-
cated than the VM. Strictly speaking, the OS is an operating system “simula-
tion,” since it is neither implemented in subleq, nor runs on the VM. Nonetheless,
it performs many of the functions of a very simple OS, and “appears” as an OS
for the subleq VM to subleq programmers.

The basic abstraction of the OS is that of process, which consists of zero (sic)
or more instances of the thread abstraction. A process is defined by: a range in
memory; a set of threads; a name; and, a symbol table. A thread is defined by
a program counter. Note that these abstractions are somewhat “poorer” than
traditional notions of these same terms. Processes are not, for example, divided
into text, data, stack, and heap sections. Processes may freely(!) modify their
own “text” section memory, have fixed sizes (no dynamic allocation), and are
responsible for all “free space” management themselves. Threads do not have
register sets (there are no registers in the subleq VM), call stacks (these, also,
do not exist in the VM) or any thread specific data. Processes with zero threads
are also non-traditional — such “processes” are essentially global data.

The OS (intentionally) enforces no protection for process memory (with ex-
ceptions, see below). Instructions may freely reference memory locations outside
the process (memory range) in which the instruction itself is executed.

There are two “special” processes — the /O process and the system process.
In the current implementation, both are 48 integers large, and are automatically
loaded into locations 0-47 and 48-95, respectively. Program counter values in-
side these processes’ memory space cause the VM to halt. (Technically, the OS
translates all instructions that attempt to set the PC to a location inside these
processes to “equivalent” instructions that set the PC to —1, which will cause
the VM to halt.) These special processes are explained in more detail below.

I/0 Process. Read and write operations to I/O locations behave specially. The
48 locations of the I/O block are to be interpreted as references to (up to) 48
I/O streams. The first 3 locations in the I/O block are hardwired to standard in,
standard out, and standard error, respectively. References to I/O locations in the
“a” parameter location result in a “read” from the appropriate I/O stream — the
value read substitutes for the the value stored at “a”. References to I/O block
locations in the “b” parameter location result in a “write” of the “a” value
to the appropriate I/O stream. More explicitly, consider the following subleq

instructions and their “C” pseudocode counterparts:



