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Preface

This book represents a selection of material from Prof. Vladimir I.
Smirnov’s encyclopedic six-volume ‘‘Course of Higher Mathematics.”
The present volume, entitled ‘‘ Linear Algebra and Group Theory,” has
several unusual features that especially recommend it to the attention of
the English-language readership. Unlike many algebra texts, this book
does not delve into mathematical byways remote from the applications;
instead, the approach adopted is consistently ‘‘concrete.”’” Moreover,
the book strives for the maximum coverage compatible with its length.
Thus, in addition to a detailed treatment of linear algebra, it also con-
tains an excellent introduction to group theory and an extensive discus-
sion of group representations, a topic usually reserved for the specialized
treatise. Under the heading of material rarely encountered in first
courses on higher algebra, one should also mention Chap. 5 on infinite-
dimensional spaces and Chap. 9 on continuous groups. It is apparent
that the author’s intention was to write an algebra text emphasizing
those topics of greatest importance in applied mathematics and theo-
retical physics. Despite this, there is nothing in the volume that the
pure mathematician can afford to ignore.

Because of the great difference between stylistic norms in English and
Russian, as well as the absence of grammatical categories in one language
that are present in the other, I have felt obliged to apply appropriate
“smoothing operations” to ensure the continuity and readability of the
translation. In doing so, I have not hesitated to add transitional sen-
tences where I thought they were called for, make theorems out of some
propositions not originally labeled as such, or clarify points that I found
obscure. Nor have I hesitated to introduce an additional chapter head-
ing not present in the original, renumber the equations in a way that
appeared to me more convenient, redraw two of the figures to improve
their perspective, and generally make the book conform to what I regard
as the needs of its prospective audience. But the two most substantive
changes were the following:
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1. Chapter 6 of the present volume was originally the Appendix of
Russian Vol. 3, Part II, while the Appendix of the present volume was
originally Secs. 63 and 93 of Russian Vol. 3, Part II. - In making these
changes, it was necessary to supply the proof of the Hamilton-Cayley
theorem (in the text) and explore the properties of the exponential of a
matrix (in the problems).

2. There are no problems in the original, perhaps due to the Russian
predilection for the use of special problem collections. It was thought
that the addition of copious problems would greatly enhance the value of
the English-language edition, as well as permit the incorporation of some
important topics not discussed in the text. Wlth this in mind, I have
asked Prof. Allen L. Shields of the Umversnty of Michigan, Prof John
S. Lomont of the Polytechnic Institute of Brooklyn, and Prof. Jacob T.
Schwartz of New York University to assist in preparing and selecting
problems for this volume. Their contributions are identified more
explicitly in the appropriate places. In addition, we have culled many
problems from I. V. Proskuryakov’s ““A Collection of Problems on Linear
Algebra,” Moscow, 1957, and from D. K. Faddeyev and I. S. Sominski’s
“A Collection of Problems on Higher Algebra,” Moscow, 1954. Occa-
sional use was also made of problem collections by N. M. Gyunter and
" R. 0. Kuzmin and by V. A. Krechmar. The net result has been to equip
this book with over four hundred pertinent problems. Answers to about
half of the computational problems and hints for the solution of the less
obvious problems involving proofs are given at the end of the book. I
have also listed several books for collateral or supplementary reading.
There has been no attempt to make this list complete; in fact, it has been
confined to books in English.

Finally, two observations should be made (1) In-a preface to the
Russian original, Prof. Smirnov thanks D. K. Faddeyev for helping him
with the group theory part of the book, in particular for writing Secs.
76, 87, 93, 94, 95 and 96; (2) To make the book self-contained, I have
suppressed some references to other volumes of the sn(-volume course,
and T have occasionally replaced others by the phrase “in an earlier
volume” or “‘in a later volume.” In every case, the reference was either
an allusion to things to come or to elementary material to be found in
any good text on advanced calculus, knowledge of which could be pre-
supposed on the part of any reader of this book.

Richard A. Silverman
Translator and Editor



“Contents

Preface

v

PART I: DETERMINANTS AND SYSTEMS OF EQUATIONS

Chapter 1. Determinants and Their Properties

1.

ST DOt R G0 O

The Concept of a Determinant

" Permutations.

Basic Properties of Determlnants

Calculation of Determinants .

Examples

The Multiplication Theorem for Determmants
Rectangular Matrices .

Problems

Chapter 2. Solution of Systems of Linear Equations

8.

9.
10.
11.
12.
13.
14.
15.
16.
17.

18.
19.

Cramer’s Rule .

The General Case .

Homogeneous Systems.

Linear Forms .

n-Dimensional Vector Space .

The Scalar Product .

Geometrical Interpretation of Homogeneous Systems
Inhomogeneous Systems

The Gram Determinant. Hadamard’s Inequality
Systems of Linear Differential Equations with Constant
Coeflicients .

Jacobians

Implicit Functlons

Problems

PART II: MATRIX THEORY

Chapter 3. Linear Transformations .

20.
21.

Coordinate Transformations in Three Dimensions .
General Linear Transformations in Three Dimensions.

3

3

7
12
17
18
24
27
31

42

42
43
48
50
52
58
60
63
66

70
75
78
83

95

95
99

vii



viii CONTENTS

29. Covariant and Contravariant Affine Vectors . . . . 106
23. The Tensor Coneept . . . . . . . . . . . 109
24. Cartesian Tensors . . . . . . =« « . . . . 113
95. The n-Dimensional Case . . . . . . . . . . 116
26. Elements of Matrix Algebra . . . . . . . . . 120
27. Eigenvalues of a Matrix. Reduction of a Matrix to
Canonical Form . . ... 125
98. Unitary and Orthogonal Transformatlons O 51
29. Schwarz’s Inequality . . L. .. 135
30. Properties of the Scalar Product and Norm ... .o137
31. The Orthogonalization Process for Vectors . . . . . 138
Problems . . . . .« o« o« o« o« < . . . . 140
Chapter 4. Quadratic Forms . . . . . . . . . . 149
32. Reduction of a Quadratic Form to a Sum of Squares . . 149
33. Multiple Roots of the Characteristic Equation . . . 153
34. Examples . . . T L
35. Classification of Quadratlc Forms ... . . . . 160
36. Jacobi’s Formula . . 165
37. Simultaneous Reduction of Two Quadratlc Forms to Sums
of Squares . . . . . . . . . ... 166
38. Small Oscillations . . 168
39. Extremal Properties of the Elgenvalues of a Quadratlc
Form. . . . .. . . 170
40. Hermitian Matrrces and Hermltlan F orms . . . . . 173
41. Commuting Hermitian Matrices . . . .. 178
42. Reduction of Unitary Matrices to D1agona1 Form .. 180
43. Projection Matrices . . . . . . . . . . 185
44. Functions of Matrices . . . . . . . . . . . 190
Problems. . . . .« .« o« o« o+ o« o« o . . . 193
Chapter 5. Infinite-Dimensional Spaces . . . . . . 201
45. Infinite-Dimensional Spaces . e w omes @ w s w 201
46. Convergence of Vectors . . . i ow e 2006
47. Complete Systems of Orthonormal Vectors . . . . 210
48. Linear Transformations in Infinitely Many Variables . . 214
49. Function Space. . .. . . . . 218
50. Relation between the Spaces F and H L. ... 221
51. Linear Operators . . . . . . . . . .« . . 224
Problems. . . . . . .« o« o« o« < . . . . 230
Chapter 6. Reduction of Matrices to Canonical Form . . 234
52. Preliminary Considerations . . . . . . . .. . . 234

53. The Case of Distinet Boots . . .. . . . . . . 240



I S R

54,
55.
56.
57.

Chapter 7.

58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.

CONTENTS

The Case of Multiple Roots. First Step in the Reduction
Reduction to Canonical Form
Determination of the Structure of the Canonlcal Form

An Example.
Problems.

PART III: GROUP THEORY

Elements of the General Theory of Groups .

Groups of Linear Transformations

The Polyhedral Groups

Lorentz Transformations .

Permutations
Abstract Groups
Subgroups

Classes and Normal Subgroups

Examples

Isomorphic and Homomorphlc Groups .

Examples

Stereographic PrOJectlon ;

The Unitary Group and the Rotatlon Group
The Unimodular Group and the Lorentz Group

Problems.

Chapter 8. Representations of Groups .

71.
72.
73.
74.
75.
76.
77.

78.
79,
80.
81.

82.
83.
84.
85.
86.

Representation of Groups by Linear Transformations

Basic Theorems.

Abelian Groups and One- Dlmensronal Representatlons
Representations of the Two-Dimensional Unitary Group .
Representations of the Rotation Group .

Proof That the Rotation Group Is Simple . .
Laplace’s Equation and Representations of the Rotatlon

Group.

The Direct Product of Two Matrlces

The Direct Product of Two Representations of a Group
The Direct Product of Two Groups and its Representations
Reduction of the Direct Product D; X Dy of Two Repre-
sentations of the Rotation Group. .
The Orthogonality Property .

Characters

The Regular Representatlon of a Group
Examples of Representations of Finite Groups.

Representations of the
Group

Two-Dimensional Ummodular

ix
242
245
251
254
260

267

267
270
273
279
283
286
289
292
294
296
298
300
305
309

315

315
319
323
325
331
334

336
341
343
346

349
355
359
365
367

370



X CONTENTS

87.

Proof That the Lorentz Group Is Simple
Problems. e

Chapter 9. Continuous Groups

88. Continuous Groups. Structure Constants .
89. Infinitesimal Transformations.
90. The Rotation Group :
91. Infinitesimal Transformations and Representatmns of the
Rotation Group.
92. Representations of the Lorentz Group
93. Auxiliary Formulas. .
94, Construction of a Group from lts Structure Consta.nts
95. Integration on a Group. The Orthogonahty Property
96. Examples e .
Problems.
Appendix .
Bibliography .

Hints and Answers

Index .

374
375

381

381
385
388

390
394
397
400
402
409
415

419
429
431

459



PART 1

Determinants and Systems of Equations
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- Chapter 1

Determinants and Their Properties

1. The Concept of a Determinant. We begin this section with a
simple algebraic problem, i.e., solving a system of linear equations.
Investigation of this problem will lead us to the important concept of a
determinant.

We begin by considering the simplest special cases. First we take a
system of two equations in two unknowns:

01171 + G1200 = b1,
9% + 2372 = Do

Here, the coefficients a; of the unknowns are provided with two indices;
the first index shows the equation in which the coefficient occurs, and the
second index shows the unknown with which the coefficient is associated.
As is well known, the solution of this system has the form

_ biag — @19by _ aubs — b1z .

) oy
Q11029 — Q12021 11020 — (12021

Next we take three equations in three unknowns:

1% + 1272 + arsrs = by,
G21%1 + @20s + @a3x3 = by
03121 + @32T2 + Q33T3 = bs,

where we use the previous notation for the coefficients. We rewrite the
- first two equations in the form

!
1121 + @122 = by — Q1323,
021%1 + G222 = by — G23Ts.

Solving these equations with respect to the unknowns z; and z» by using
the previous formulas, we have

(b1 - a13x3)@22 — @12(bs — @23%3)
s
@11022 — Q12021

_ au(bz — (23%3) — (bl — llwl'a)an_
Q11023 — G12021

ry =

) Lg
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Substituting these expressions into the last equation of the system, we
obtain an equation determining the unknown z;; when this equation is
finally solved, we find

g = 01102003 + @19b2031 + 1021032 — @11DeGss — G1202103 — b1a20031
3 = .
011022033 + Q12023031 + G13021032 — Q11023032 — (12021033 — G13022031

We now examine in detail the construction of the formula (1). First of
all, we note that its numerator can be obtained from its denominator by
substituting the constant terms b, for the coefficients a;3 of the unknown
z3. Thus, the problem is to explain the law of formation of the denom-
inator, which does not contain any terms b;, but rather is made up
exclusively of the coefficients of the system. We write these coeflicients
in the form of a square array '

a11 Q12 Q13
Q21 Q22 Qg3 ||, (2)
Q31 Q33 (33

preserving the order in which they appear in the system itself. This
array has three rows and three columns, and the numbers a. are called
its elements. The first index gives the row in which the element appears,
and the second index gives the column. Writing out the denominator

011022033 + G12023031 + Q13021032 — Q11023032 — G12021033 — G13022031 (3)

of the ratio (1), we see that it consists of six terms. KEach term is a
product of three elements from the array (2), and in fact each term
contains an element from every row and every column. The general
form of these products is

A1pQ 240 3r, 4)

where p, ¢, r are the integers 1, 2, 3 arranged in some definite order, i.e.,
the first and second indices are both integers (from 1 to 3) and each
product (4) contains an element from every row and every column. To
obtain all the terms of the expression (3), the second indices p, g, r in
the product (4) have to be taken in all possible orders. Clearly, there are
six possible permutationst of the second indices, namely,

1,23 231 31,2 1,32 21,3 321 ()
this gives us all six.terms of (3). However, we see that some of the
products (4) appear in (3) with a plus sign, while others appear with a
minus sign. Thus, it remains only to explain the rule by which the

sign is to be chosen. As we see, the products (4) whose second indices
are the permutations

1,2, 3; 2,3,1; 3,1,2 (5a)
t See Sec. 2. i
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appear with a plus sign, while the products whose second indices are the
permutations

1,3,2, 21,3 321 (5b)

appear with a minus sign.

We now explain how the permutations (5a) differ from the permuta-
tions (5b). We shall call the fact that a larger number comes before a
smaller number in a permutation an inversion, and we shall calculate
the number of inversions in the different permutations (5a). In the
first of these permutations, there are no inversions at all, i.e., the number
of inversions equals zero. Next, we consider the second permutation
and compare the size of each number appearing in it with the numbers
that follow. We see that there are two inversions here, since the num-
bers 2 and 3 come before the number 1. Similarly, it can easily be seen
that the third of the permutations (5a) also contains two inversions.
We can summarize this situation by saying that each of the permutations
(5a) contains an even number of inversions. We are now in a position
to formulate the following sign rule for the expression (3): The products
(4) for which the number of inversions in the permutations formed by the
second indices is an even number appear in (3) without any change.
However, the products (4) for which the permutations formed by the
second indices contain an odd number of inversions appear in (3) with a
minus sign. The expression (3) is called the determinant (of order 3)
corresponding to the array (2). We can now easily generalize these
considerations and define a determinant of any order.

Suppose that we are given n? numbers arranged in the form of a square
array

Qi1 Q12 ° ° * Qip

Q21 Q22 * ° ° Q2p (
6)

An1 Qp2 = ° ° Qun

with n rows and n columns. The elements ay of this array are certain
complex numbers, and the indices ¢ and k indicate the row and column
in which the number a;; appears. We now take the elements of the array
(6) and form all possible products containing one (and only one) element
from each row and column. These products have the form

A1p,G2p, © ° * Qup,, (7)

where pi1, ps, . . . , p, is some arrangement of the numbers 1,2, . . . , n.
To obtain all possible products of the form (7), we must take all possible
permutations of the second indices. As is well known from elementary
algebra (see also Sec. 2), the total number of such permutations equals n
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factorial, i, 1-2- - -n=n! Each permutation has a certain num-
ber of inversions as compared with the basic arrangement 1,2, . . ., 7.
We now ascribe signs to the products (7) by the following rule: We put
a plus sign before products whose second indices form a permutation
with an even number of inversions, and a minus sign before products
whose second indices form a permutation with an odd number of inver-
sions. The sum of all these products, with the appropriate signs, is
called the determinant of order m corresponding with the array (6).

Clearly, this sum contains n! terms.

It is not hard to give this definition in terms of a formula. Let
p1, P2, . . . , Pn be a permutation of the numbers 1, 2, . . ., 7, and
denote the number of inversions in this permutation by the symbol

[ply P2y -« - Jpn]'

Then, the definition just given can be written as the formula

11 QGiz T Qi
Qg1 Q22 Aon _ 2 (_1)[pl,p,,....pn]almazm R .
............ .
an1  Qne Apn
(8)

where the summation extends over all possible permutations pi, p2, . . .
p. of the second indices, and the determinant of an array is indicated by
writing the array between vertical lines. (When talking about an array
as such and not about its determinant, we put the array between double
vertical lines.)

We note that in the expression (3), the factors in each product are
arranged in such a way that the first indices occur in increasing order.
Thus, so far, we have been concerned with the permutations formed by
the second indices. However, the factors in each product can just as
well be arranged in such a way that the second indices occur in increasing
order. Then (3) becomes

Q11029033 + A31019023 + (21032013 — G11032023 — A21012033 — A31022013. (9)

Here, the first indices form all possible permutations p, ¢, of the integers
1, 2, 3, and it is easily verified that the sign rule for the terms of the
expression (9) can be formulated just as before, but with respect to the
first indices instead. This leads us to consider not only the sum (8) but
also the similar sum

(—1)[1“'1’2 ’’’’ p"]amlapﬂ © 0t Opane (10)
(1,02, -« + D7)

It is clear that the sum (10) consists of the same products as the sum (8).
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Moreover, we shall see below that these products have the same signs
as in the sum (8), i.e., the two sums (8) and (10) are the same. (We
have just seen that this is the case for n = 3.)

Finally, we return to the case n = 2. Here, the array has the form

i1 Q12 ;
Q21 Q22
and (8) gives the expression
Q11 Gz
= Q11022 — Q12021 (11)
A1 Q22

for the second order determinant corresponding to this array.

The above considerations show that if we wish to understand the
properties of determinants, we must become more familiar with the
properties of permutations. Thus, we now turn to this subject.

2. Permutations. A set of n elements arranged in a definite order is
called a permulation. There are n! different permutations that can be
formed out of n elements. For n = 2, this is obvious, since there are
only two possible arrangements of two elements. For n = 3, the asser-
tion follows immediately from the enumeration (5); here, the elements
are the numbers 1, 2, 3, and it is easily verified that (5) gives all possible
permutations of these three elements. For arbitrary n, we shall prove
our assertion by mathematical induction, i.e., assuming that the assertion
is valid for n elements, we shall show that it is also valid for n + 1
elements. Thus, we assume that n elements give n! permutations, and
we consider any n + 1 elements, which we denote by

Cy Cy ..., Chgr

Consider first the permutations whose first element is C;. To obtain all
possible permutations of this type, we must put C; in the first position
and then write down all possible permutations of the n remaining ele-
ments; by assumption, the number of such permutations equals n! In
just the same way, the number of permutations whose first element is C,
also equals n! Thus, the total number of different permutations of the
elements Cy, Ce, . . . , Cuy1 equals

Alln+1) =12+ -n-(n+1) = @+ 1),

as was to be proved. (Of course, we can assume that our elements are
the positive integers, and we shall henceforth adhere to this convention.)

The operation consisting of interchanging the positions of two elements
in a permutation ts called a transposition. It is immediately clear that
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we can obtain any permutation from any other permutation by perform-
ing transpositions. For example, take the two permutations

1,3,4,2; 2,4,1,3

of four elements. We can go from the first of these permutations to the
second by performing the following transpositions

1,3,4,2—52,3,4,1-24,3,152,4,1,3.

Here we needed three transpositions to go from the first permutation
to the second. If we had used other transpositions, we could have gone
from the first permutation to the second differently. In other words,
the number of transpositions needed to go from one permutation to
another is not uniquely determined, i.e., we can go from one permutation
to another by using different numbers of transpositions. Thus, it is
important to show that for any two given permutations, the different
numbers of transpositions needed to go from one permutation to the
other are either all even or all odd; this can be expressed differently by
saying that these numbers always have the same parity. To see this, we
introduce the concept of an inversion, which was already used in the
preceding section. Suppose we are given a permutation of the » numbers
1,2, ...,n The permutation

1,2 ...,n, (12)

where the numbers appear in increasing order, will be called the basic
permutation. By an tnversion, we mean the fact that two elements of a
permutation do not appear in the order in which they appear in the basic
permutation (12), or in other words, that a larger number comes before
a smaller number. Permutations in which the number of inversions is an
even number will be called permutations of the first class, and those in which
the number of inversions is odd will be called permutations of the second class.
The following theorem is basic for our further work:

A transposition changes the number of inversions by an odd number.

Proor. Take any permutation

a,b,...,k,.;.,p,...,s, (13)

and assume-that we carry out a transposition of the elements k and p, i.e.,
that we interchange the positions of these two elements. After such a
transposition, the positidn of the elements k and p with respect to the
elements standing to the left of k and to the right of p remains unchanged.
The only thing that changes is the position of the elements k and p with
respect to the elements of the permutation between k and p and, of
course, the position of the elements k¥ and p with respect to each other.
We now calculate the total change in. the number of inversions. Suppose



