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INTRODUCTION

Asymptotic prime divisors represent the interface of two major ideas in the
study of commutative Noetherian rings. The first, the concept of prime divisors,
is one of the most valued tools in the researcher's arsenal. The second is the
fact that in a Noetherian ring, large powers of an ideal are well behaved, as shown
by the Artin-Rees Lemma or the Hilbert polynomial.

Although its roots go back further, the recent interest in asymptotic prime
divisors began with a question of Ratliff: What happens to Ass(R/In) as n gets
large? He was able to answer a related question, showing that if I is the integral
closure of I, then Ass(R/;;) stabilizes for large n. In a later work, he also

+
showed that Ass(R/In) c Ass(R/In 1). (Earlier, Rees had shown that if

P e Ass(R/;;), some n, then P € Ass(R/;a5 for infinitely many m.) Meanwhile,
Brodmann answered the original question, proving that Ass(R/In) also stabilizes
for large n. Since then, the topic of asymptotic prime divisors has been growing
rapidly, the latest development being the advent of asymptotic sequences, a useful
and interesting analogue of R=-sequences.

These notes attempt to present the bulk of the present knowledge of asymptotic
prime divisors in a reasonably efficient way, to ease the task of those wishing to
learn of, or contribute to the subject. Modulo some gnashing of teeth, and rending
of gamments, it was both educational and satisfying to write them. I hope that
reading them is the same.

The first chapter shows that for an ideal I 1in a Noetherian ring R,
Ass(R/In) stabilizes for large n, as does Ass(In_l/In), the respective stable
values of these two sequences are being denoted A*(I) and B*(I). Also B*(I) is
characterized as the contraction to R of prime divisors Q of t-lﬁ with
It g Q, where R=ER[t-1,It] is the Rees ring of R with respect to I.

Chapter Two shows that A" (I) -B (I) < Ass R, and that P e A (I)-B (I) if
(k)

and only if there is a k > 1 such that P is part of a primary decomposition

of I for all sufficiently large n.



VIl

= -2,
Chapter Three shows that Ass(®/I) € Ass®/I") €..., and that this sequence
—k —ke *
eventually stabilizes to a set denoted A (I). Furthermore, A (I) €A (I). It
—k
also developes several technical results useful for dealing with A (I), the most
—k
important of these being that in a local ring, P e€ A (I) if and only if there are
* * * * *

primes q < p in the completion R such that q is minimal, p NR=P and
E S I T
p/qd e A (IR +q /q).

In Chapter Four, it is shown that if R is locally quasi-unmixed, then

—

Pe A (I) if and only if height P =ﬂ(IP), the analytic spread of IP . Since a
complete local domain is locally quasi-unmixed, this result meshes nicely with the
one mentioned from Chapter Three.

Chapter Five introduces asymptotic sequences: A sequence Ky srees X such

—

that (xl,..., xn) #R and for i=0,...,n-1, X5 dU(P e A ((xl""’ xi))]. In
a local ring ([®,M) it is shown that Kyoeees X is an asymptotic sequence if and

* %k *
only if height ((x .y xn)R +q /q )=n for each minimal prime ¢q of the com-

1°°°

pletion. This is then used to show that for a given ideal I in any Noetherian
ring, all asymptotic sequences maximal with respect to coming from I have the
same length, denoted gr*I. It is then shown that asymptotic sequences are to
locally quasi-unmixed rings as R-sequences are to Cohen-Macaulay rings.

In Chapter Six, the sequence x X is called an asymptotic sequence over

19

the ideal I if (I,x % xn) #R and for i=0,...,n-1,

10"
X dU(P € K*((I,xl,..., xi))]. It is shown that in a local ring, all maximal
asymptotic sequences over I have the same length.

Chapter Seven proves that in a local ring, the grade of R/In stabilizes for
large n, and gives partial results concerning gr(R/;;).

Chapter Eight identifies, with one possible exception, all Noetherian rings for
which A" (I)=A (I) for all ideals I.

In Chapter Nine, asymptotic prime divisors play a minor role in proving the
following unexpected result. Let P be prime in a Noetherian domain. Then there
is a chain of ideals P= IO L= I1 CZ...CiIn with the following property: Let Q

be a prime containing P, and let j be the largest subscript such that Ij cQ.

Then P ©Q satisfies going down if and omly if j is even.



IX

In Chapter Ten, we consider a local ring (R,M) and the ideal transform of
M, T(M). Previously it was known that the following two statements are equivalent:
(a) TM) is an infinite R-module (b) The completion of R contains a depth 1
prime divisor of zero. Our main result adds two more equivalent conditions:
(c) M e A*(J) for every regular ideal J (d) There is a regular element x with
M e A*(J) for all J~xR. Here J~I 1if for some n and m, 1% and J® have
the same integral closure. Motivated by statement (d), we then discuss the possi-

bility of defining a strong asymptotic sequence x X with (xl,..., xn) #R

10

*
and for i=0,...,n-1 x, dU{P enNA (J)'J—v(x o5 xi)], in the hope that such

i+l ; Ak

a sequence will stand in relation to prime divisors of zero, as asymptotic sequences
stand to minimal primes. This program is carried out for n=1 and 2.

Chapter Eleven is aptly titled Miscellaneous. It contains topics (of varying
worth) which did not fit elsewhere.

The study of asymptotic prime divisors frequently impinges on that of the
structure of the spectrum of a Noetherian ring, often referred to as the study of
chain conditions. I have tried to keep to a minimum the amount of knowledge of
chain conditions necessary to read these notes. In the Appendix, I list those
definitions and basic results (with references for the curious reader) which are

referred to in the text.
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CHAPTER T: A (I) and B (I)

DEFINITION. Let I be an ideal in a Noetherian ring R. For n=1,2,3,..., let

n

ACT,0) = Ass (R/T™ and let B(Ln)=Ass (T 1TY.

In [R3], Ratliff asked about the behavior of the sequence A(I,n) (and
showed that a related sequence stabilized, see Chapter 3). In [Bl], Brodmann
showed that both sequences A(I,n) and B(I,n) stabilize for large n, as we now
show. Recall that the graded Noetherian ring T::ZRn, n > 0 1is homogeneous if

T==R0[R1]. Our first lemma is well known.

LEMMA 1.1. a) Let Zn\O Rn be a Noetherian homogeneous graded ring. Then there

is an £ such that for n > 2, (O :Rl)fWRn= 0.

b) Let I be an ideal in a Noetherian ring. Then there is an £ such that for

0~ 2, ™ gy e P,

a . Let

Proof: a) Let (0 :Rl) be generated by homogeneous elements aps-ees Ay

4 =1+max/deg ail. If x= Zriai e (0 :Rl)FRn with n > £, then we may assume

the r, are homogeneous and have T, € R,T. Thus r.a, = 0, and so x=0.

1

+
b) Let ZRn==ZIn/In i and pick £ as above. Say n > £ and let

), +
X € (In+1: I)fWIﬂ. Suppose that x ¢ I". Let xe Ik- Ik 1,

+ + - +
£ <k <n. Since xI < gl = e 2, with x e Ik/Ik ! =R, we have

and note that

0#x e (0:R,)NR

1 K contradicting part a.

LEMMA 1.2. Let T= ZRn be a Noetherian graded ring. Let I be a homogeneous
ideal and let ¢ be a homogeneous element. Suppose that S 1is a multiplicatively
closed subset of RO and that (I :c)NS=¢. Then there is a homogeneous element
d, such that (I:cd) 1is prime and (I :cd)(1S=0.

Proof: Among all homogeneous d' with (I :c¢d')1S=@, choose d so that
(I:cd) is maximal. It is enough to take homogeneous x and y mnot in (I : cd)
and show xy ¢ (I :cd). Suppose, contrarily, that xy e€ (I :cd). Then

x € (I:cdy) so that (I:cdy) is strictly larger than (I :cd). Thus there is



an s e€ SN (I:cdy). Now y e (I:cds), showing that this ideal is strictly
larger than (I :cd). Thus there is an s' € SN (I :cds). This gives

ss' € SN (I:cd), a contradiction.

PROPOSITION 1.3. [ME] Let T=Zn§0 Rn be a Noetherian homogeneous graded ring.

Then there exists an m such that Ass (R_) =Ass (R ) for all n > m.
RO m RO n =

Proof: Let P e U AssR (Rk)’ k=0,1,2,... . Then for some homogeneous c e T,
0

P=(0: c)R Clearly P= (0: c)TﬁRO and by Lemma 1.2, for some homogeneous

0

* *
de T we have P =(0:cd) prime in T and P HRO=P. As AssT(T) is finite,

| . inite.
we see that U AssRO (Rk) is finite

Now select £ as in Lemma 1.1 and say n > £f. If P e AssR (Rn) write

P=(0:c¢) ceR . As n:E,P=(0:CR1) we have

R0 ’ n RO : 1
P e AssRO (Rn+l)' Thus AssRO (Rn) c AssRO (Rn+1) for mn > £ As we already
have U AssR (Rk) finite, the result follows.
0

COROLLARY 1.4. (Brodmann [Bl]) Let I be an ideal in the Noetherian ring R.

The sequence B (I,n) stabilizes.

1, n

Proof: Apply the proposition to 2101

COROLLARY 1.5. (Brodmann [B1]) Let I be an ideal in the Noetherian ring R.

The sequence A(I,n) stabilizes.

n+1 n+l

Proof: The exact sequence 0 > I"/I < R/I > R/I" > 0 shows that

A(I,n+l) < A(I,n) UB(I,n+l). For large n, we already have B(I,n+l) = B(I,n) <

A(I,n). Thus A(I,ntl) < A(I,n), and the result is clear since A(I,n) 1is finite.

Note that for an ideal I in a Noetherian ring R, B(I,n) < A(I,n). The

following example, due to A. Sathaye, shows that neither sequence is monotone.

EXAMPLE. Let k be a field and n a positive integer. Let R:k[x,zl,...,z ]

2n
2i-1 2i . _
24-1- 2 for i=1,2

with the restrictions that xz 21

.,n, and 2lz, =0 for
j’i



i,j < 2n. Let I=(z ). Then for

-
A

z, ) CP= (x,zl,.‘.

1 ¢ Eg weeen By * %on

1<i<?2n, PeB(Li) if i 1is even, while P ¢ A(I,i) if i 1is odd.
2i-1 2i

Proof: Since 2z, éd 1 and Pz
2i-1

1 <1i<n. To see that P ¢ A(I,s) for s odd, 1

2i
>

we have P e B(I,2i) for

RN

i1
i-1 €1

2n, mnote that

IN
n
IN

P ¢ A(I,1) since I is prime. Now for 1 < q < 2n, the residues of the set

u u
_ .4y 2 2n T _ . .
Tq (zq} V[Z2 ceaZo |u2 coetu, =q, 0< u; < i} form a generating set for
q,.9%1 ; . .
I*/1 over k[x]. If q 1is even, there are no relations, and Tq gives a
. ; . . - q q+l
free basis. If q 1is odd, there is the unique relation xzq e I Suppose
+
P e A(I,s). Then for some w ¢ IS, Pw C 1°. Consider r such that we I -I" 1.
HA
By the previous remarks, xw € " 1 shows that r 1is odd. Furthermore, it can
r+2 .

be seen that xw ¢ I . Thus =r+1 and so s 1is even.

DEFINITION. For I an ideal in a Noetherian ring, the eventual constant values
of the sequences A(I,n) and B(I,n) will be denoted AN(I) and BW(I),

respectively.

The fact that AK(I) and B“(I) behave well under localization is straight-

forward, and yet we will use it so often that we state it formally.

LEMMA 1.6. Let I¢

P be ideals in a Noetherian ring, with P prime. Then

P e AW(I) (respectively P € BH(I)) if and only if P_ € AW(IS) (respectively

S

PS € B“(IS)), for any multiplicatively closed set S disjoint from P.

The next result will lead to some interesting applications of asymptotic
prime divisors. As this result will be used again when discussing the integral

closure of an ideal (Chapter 3), we give it here in full generality.

If J 1is an ideal of R, we will use J to denote the integral closure of

J. Thus J={x e Rlx satisfies a polynomial of form x“a—jlx“'1+...+jn:=o, with
4

j. e J Recall that R is the integral closure of R.

1

PROPOSITION 1.7. [M3] Let P be a prime ideal in a Noetherian domain R. There

is an integer n > 1 with the following property: [If I is an ideal of R with



IC p" and if there exists an integral extension domain T of R and a

Q € spec T with QMNR=P and Q minimal over IT, then P e Ass(R/I).

Proof: Let P g Pm be all of the primes of R which lie over P. Select

100
u; € Pi-U Pj’ j#1i, and let S=R[u1,...,um]. Notice that Pi is the unique

rime of R lying over .=P._NS. Let (V.,N,) be aD.V.R. overring of S
p ying Pl 3 4 i

with Niﬂ S = P; - Since S is a finitely generated R-module, we can choose b e R
with bS ©R. Pick n sufficiently large that b ¢ Nri], i=1,2,...,m.

Suppose that I P" and that T 1is an integral extension domain of R
containing a prime Q with QMR=P and Q minimal over IT. We first reduce
to the case that T=S. Clearly we may assume T=”1_", and by going down we may
replace T by R. Finally since Pi is the only prime of R lying over Py
i=1,2,...,m, by going up we replace R by S.

We now have T=S, and of course Q= Py for some 1i=1,2,...,m. We localize
Py is minimal over IS, there is an integer
k>1 and an s € S =Py with spli{ IT. Using bS © R we have bst = bsp‘i( =

making P maximal in R. Since

bIT < I. Furthermore, we claim bs ¢ I. If bs e -I—E " < p: ' N?: NI; , then
since s ¢ P implies s 1is a unit of Vi , we have b € NI; 5 contradicting our
choice of n. Thus bs ¢ I but bst < I, showing that Pk consists of zero

divisors modulo I. As P was maximal, P e Ass(R/I).

COROLLARY 1.8. Let I be an ideal in a Noetherian domain R and let T be an
integral extension domain of R. If Q 1is prime in T and minimal over IT,

then QMR € A*(I).

Proof: Let P=QNR, and choose n as in the proposition. Then P e A(I,m)

for m > n.

The following fact about the integral closure of a Noetherian domain appears

to depend upon knowledge of asymptotic prime divisors.



PROPOSITION 1.9. Let R be a Noetherian domain. Let J= (bl""’ bm) be a
finitely generated ideal of the integral closure R. Then the number of primes of

R minimal over J 1is finite.

Proof: Let S=R[b .y bm] and let I= (bl""’ bm)S. Thus S 1is Noetherian

10"
and IR=J. If Q € spec R and Q is minimal over J, then by Corollary 1.8,

. * * =
QMNse A (I). Since A (I) 1is finite and since only finitely many primes of R

lie over a given prime on S, we are done.
We generalize [N, 33.11].

PROPOSITION 1.10. Let R © T be an integral extension of domains with R
Noetherian. Let Q be a height n prime of T and let P=QNR. Then
grade P < n. If grade P=n, then for any R-sequence ap sy al coming from

a ).

P, P 1is a prime divisor of (al,..., n

Proof: We induct on n. For n=1, pick a# 0 in P. Since height Q=1, Q
is minimal over aT. By Corollary 1.8, for sufficiently large k, P 1is a prime

divisor of akR. It is not difficult to now see that P is also a prime divisor

of aR.

For n > 1, suppose grade P >n and let ay ..., ay be an R-sequence
coming from P. We claim height(al,..., an)T=:n. If not, say q € spec T,
height q < n and (al,..., an)T < q. By induction, grade qNR < height q < n,
contradicting that S IERRRTICN is an R-sequence in q/'R. Thus the claim is true,
and so Q 1is minimal over (al,..., an)T. By Corollary 1.8, for large k we
have P a prime divisor of (al,..., an)k in R. As ajseees ay is anR-sequence,
P is also a prime divisor of (al""’ an) by [K1, Section 3-1, Exercise 13].

In Chapter 5 we strengthen Proposition 1.10, replacing '"height Q" by

"little height Q".

The next three propositions give easy circumstances under which a prime must

be in A ().



PROPOSITION 1.11. Let I be an ideal in a Noetherian ring, and let the prime P

* ¥
be minimal over I. Then P e A (I). Also P e B (I) if and only if height P>0.

*
Proof: Since P 1is minimal over I for all n, P e A(I,n), and so P e A (I).
For the second statement, localize at P, so that 1 is P-primary. Now
height P > 0 if and only if I is not nilpotent. If I 1is nilpotent, clearly
* . . n, n+l
P¢ B (I). If I 1is not nilpotent, then for all n /1 is a nonzero module

(by Nakayama's Lemma) which must have at least one prime divisor. However P is

the only possibility. Thus P e B(I,n) for all n.

PROPOSITION 1.12. Let I <P with P a prime divisor of O in a Noetherian

ring. Then P ¢ Aw(I).

Proof: Localize at P and then write P=(0:c). For n large enough that

c ¢ In, clearly P= (In: c).

Our next proposition generalizes Proposition 1.11. The lemma is due to

Ratliff.

LEMMA 1.13. Let Q € P be primes of the Noetherian ring R such that Q is a
prime divisor of 0. Then there is an integer n > 0 such that for any ideal J

of R with J < P’ and P minimal over Q+J, we have P e Ass(R/J).

Proof: Localize at P. Let qlﬂ...flqr be a primary decomposition of 0 with

q primary to Q. Choose 0#x € quW...ﬂ q. s and pick n such that x ¢ p".

Suppose that p e Ass(R/J) and p#P. Since P 1is minimal over Q+J, we have

Q ¢ p. Thus in R 0=(q,) N...N(q.) so that xR =0. This shows that x
=P P’ 927p %’p p

is in every p-primary ideal. However, J C P" shows that x ¢ J. Thus

P € Ass(R/J), wusing primary decomposition.

PROPOSITION 1.14. Let 1I,P,Q be ideals in a Noetherian ring with Q a prime

¥
divisor of 0, and P a prime minimal over Q4+ I. Then P e A (I).

Proof: With n as in Lemma 1.13, P e A(I,m) for all m > n.



Later (Proposition 2.5) we will strengthen Proposition 1.14 to say that if in

addition P #Q, then PeBR(I).

*
We give a characterization of B (I) in terms of the Rees ring of R with

respect to I, that is, the ring ®R=R[t ~,It] with t an indeterminate.

PROPOSITION 1.15. Let I be an ideal in the Noetherian ring R, and let

= ¥*
R=R[t 1,It:] be the Rees ring of R with respect to I. Then P e B (I) if and

only if there is a prime divisor Q of t-lfR such that It £€Q and QNR=P.

Proof: Let P e Bm(I). Consider £ as in Lemma 1.1b, and choose n > f with

. ntl . .
Write P= (I :c) with c e 1. Since ct" e R, mnote that

- +
(t lfR $ ctn) AR= (In L :c)=P. By Lemma 1.2 there is a dt™ ¢ ® such that

P e Ass (In/1n+1) s

-1 T
Q=(t R: dctn_m) is prime in ® and QNR=P. We must show that It & Q. Since

Q 1is a proper ideal, S ™ @™ (ctn) ¢ t-lm. Thus m > 0 and dc ¢ " 1.
+ 'HT‘H‘

By Lemma 1.1, (In+m 2 :I)N IE: In 1, and since c € ™ we must have

de ¢ (In 2 :I). Therefore It & (t-lfR : dctnm) =Q as desired.

Conversely, suppose that Q= (t-lfR:gtk) with g € Ik, that QN R=P, and
that It £Q. Pick ht e It-Q. Clearly Q= " ; ghmtkm) for all m > 0.
Thus P = (Ik_HTH—]' 3y ghm). Since ghm € Ik+m and m is arbitrary, we have
P e B*(I).

We close the chapter with a question. We have seen that the sequence

*
A(1,1),A(I,2),... is not increasing. Ratliff asks whether A(I,1)NA (I),

A(I,2)NA" (I),... 1is increasing?



CHAPTER II: A (I)-B (I)

In this chapter, we study primes contained

in A::(I) but not BW(I), our

main result being that such primes must be prime divisors of zero.

LEMMA 2.1. Let I be an ideal in a Noetherian ring R and (by Lemma 1.1) suppose
for n > £ we have (In :I)N IZ= In_l. If P 1is prime in R and if P= (In :c)
y) %*
with n> /4 and c¢ce I', then P e B (I).
Proof: Since c¢I € cP C In, we have c¢ ¢ (In s I)N Ip'= In-l, For j > 0, clearly
L : e ; e i )
P C (In 3, cIJ). Conversly, if 1 ¢ (Irl 3. cIJ) then re1? L < (Ir1 3. N I!’:
i yal i
IR 1, so that r e (In gL s c1d 1). Iterating, we find r e (Ir1 :c)=P. Thus
" . -1 : e
P = (In J cIJ) for j=1,2, Now we already have c¢ e i , So cljiln J 1.
Thus P e B(I,n+j) for j=1,2,...
*
PROPOSITION 2.2 [ME] Let I be an ideal in a Noetherian ring R. If P ¢ A (I)-
*
B (I) them P 1is a prime divisor of zero.
Proof: We may localize at P. Since P ¢ AX(I), for all large n we have an

x € R with P= (In:xn), and by Lemma 2.1 we

is a prime divisor of zero, it is sufficient to

is complete, which we now assume. Let V= (Iﬂ :

) f
Vn=[(In:P)+I£]/I' Now PV=0, so V is a
over R/P. Clearly X taken modulo Iﬂ' is a
i g 7 - v 'V
V,. Since V_ .,V , we see that \n# 0,

2#0 be in this intersection, and let A ¢ (If

n

P
have X ¢ T . To show that P

show this in the case that (R,P)
¥/ N
P)/I and for n > £ let
finite dimensional vector space
nonzero element in the subspace

by finite dimensionality. Let

n
:P)-1I" be a preimage. Since
p g

0
A

NeV write A=d +1 with d e (I :P) and i e I For m > n we have
n n n n n —
IG -1) ZP(i_-1i)=P(d -d) =TI Thus i -i e (I":pnrf=1""1 cp™?,
n m — n m n m - n m =
showing that the sequences -fin? and {dUW are Cauchy sequences. Let in > 1

and dn—>d. Since 1i ¢ Iﬂ and ) ¢ Iﬂ, d#0.

n

dP (' P =0, concluding the proof.

Finally, since an c " c Pn,



