Mathematical Foundations
of Computer Science 1989

Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

379

A. Kreczmar G. Mirkowska (Eds.)

Mathematiogl 7 .
of Computer Science 1989

Potabka-Koztibnik, Poland
August 28 — September 1, 1989
Proceedings

SpringerVerlag
Berlin Heidelberg New York London Paris Tokyo Hong Korig

Editorial Board
D. Barstow W.Brauer P. Brinch Hansen D. Gries D. Luckham
C. Moler A.Pnueli G. Seegmiiller J. Stoer N. Wirth

Volume Editors

Antoni Kreczmar

Grazyna Mirkowska

University of Warsaw, Institute of Informatics
PkiN, room 850

PL—-00-901 Warsaw, Poland

CR Subject Classification (1987): D.2.4, F11, F.2-4,G.2.2, G.4,1.2.2

ISBN 3-540-51486-4 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-51486-4 Springer-Verlag New York. Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication
of this publication or parts thereof is only permitted under the provisions of the German Copyright
Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be
paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1989
Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
2145/3140-543210 — Printed on acid-free paper

PREFACE

The present volume contains papers selected for presentation at the 14th Symposium on
Mathematical Foundations of Computer Science, MFCS ’89, held in Porgbka-Kozubnik,
Poland, August 28 — September 1, 1989.

The symposium is the fourteenth in the series of international meetings which have taken
place since 1972. The first meeting was organized in Jablonna, Poland and aimed at
attracting computer scientists from West and East, both terms being understood in as
general a sense as possible. The symposium focused the attention of its participants on
theoretical issues of computer science. The next meetings were organized alternately in
Czechoslovakia and Poland till 1981 and then every other year in Czechoslovakia only. The
present conference aims at resuscitating the long tradition of alternating the organization
of MFCS between Poland and Czechoslovakia.

Principal areas of the MFCS ’89 conference include: logics of programs, parallel and dis-
tributed computations, deductive databases, automata and formal languages, algorithms
and data structures, software specification and validity, complexity and computability the-

ory.

The Proceedings include invited papers and communications. The latter have been selected
by the International Program Committee from 102 submitted papers.

The Program Committee of MFCS '89 consists of : A. Arnold (Bordeaux), A. Blikle (War-
saw), J. de Bakker (Amsterdam), M. Chytil (Prague), P. van Emde Boas (Amsterdam),
R. Freivalds (Riga), H. Genrich (Bonn), J. Grudka (Bratislava), H. Langmaack (Kiel), B.
Monien (Paderborn), P. Mosses (Aarhus), G. Mirkowska (Warsaw), M. Protasi (Pisa), A.
Salwicki (Warsaw), W. Wechler (Dresden).

The editors wish to thank all the members of the Program Committee for their meritorious
work in evaluating the submitted papers. We would also like to thank all referees who
assisted the members of the Program Committee:

I. Aalbersberg, E. H. Aarts, D. Ackermann, E. Astesiano, P. Atzeni, L. Banachowski, D.
Bini, Ch. Blaue, J. Blazewicz, F. Boer, A. Borzyszkowski, G. Boudol, H. D. Burkhard,
K-H. Buth, B. Buth, A. Caprani, I. Castellani, B. Courcelle, B. Chlebus, L. Czaja,
P. Degano, K. Diks, P. Duri§, E. Fachini, R. Feldmann, G. Gambosi, W. Goerigk, U.
Goltz, M. Grabowski, J. F. Groote, M. Hass, L. Holenderski, H. J. Hoogeboom, H. Hun-

v

gar, J. Hromkovi¢, P. Kandzia, B. Kanger, A. Kelemenov4, F. KluZniak, J. N. Kok, B.
Konikowska, V. Koubek, R. Koymans, J. Knoop, I. Kramosil, A. Kreczmar, M. Ktivdnek,
A. Marchetti-Spaccamela, M. Krivanek, M. Lenzerini, M. Liskiewicz, A. Litwiniuk, G.
Longo, K. Lory$, F. Luccio, R. Lueling, W. Lukaszawicz, G. Mascari, A. Masini, J. Ma-
tousek, A. Mazurkiewicz, B. Mayoh, Y. Métivier, E. Meyer, J. Milewski, U. Montanari,
A. W. Mostowski, H. Miller, P. Mysliwietz, M. Napoli, M. Nielsen, R. De Nicola, D.
Niwifiski, B. Ochmanski, E. Orlowska, R. Orsini, L. Pacholski, F. Parisi-Presicce, W.
Pawlowski, W. Penczek, H. P. Pfahler, M. Piotrow, W. Preilowski, I. Privare, H. Reichel,
W. Reisig, L. Ricci, L. Rudak, J. J. Rutten, P. Ru¥i¢ka, M. Ryéko, W. Rytter, A. Salibra,
G. Sénizergues, BE. M. Schmidt, F. Simon, S. Skyum, M. Slusarek, E. Smith, L. Stapp,
M. Steinby, J. Steiner, P. étépének I. H. Sudborough, A. Szalas; D Szczepaﬁska, 0.5
vykora, M. Syslo, A. Tarlecki, G. Tel, D. Uhlig, W. Unger, P. Urzyczyn, B. Vauquelin, L.
Voelkel, F. J. Vries, 1. Vrio, Vysko&, J. Warpechowska, G. Wechsung, J. Wiedermann, M.
Wiegers, M. Will, T. Zeugmann, J. Winkowski, G. Winskel, S. Yoccoz, K. Zorychta.

MFCS ’89 has been organized by the Institute of Informatics, University of Warsaw, in
co-operation with the Association of Information Processing and with the financial support
of the Polish Ministry of National Education (Grant RPI 09).

The Drganizing Committee of MFCS ’89 consists of K. Diks, M. Grabowski, A. Kreczmasr,
G. Mirkowska, A. Szalas.

We thank all the authors of the submitted papers for their valuable contributions and
Springer-Verlag for their excellent co-operation in the publication of this volume.

Warsaw, May 1989 A. Kreczmar

G. Mirkowska

TABLE OF CONTENTS

INVITED LECTURES

V. N. Agafonov
From specification languages to specification knowledge bases: The pto approach

B. Courcelle

Monadic second-order logic and contezt-free graph-grammars

D. Harel

A thesss for bounded concurrency i 4 e e e e e e e e

J. Hartmanis, D. Ranjan
Space bounded computations: Review and new separation results -

V. E. Kotov, L. A. Cherkasova

Concurrent nondeterministic processes: Adequacy of structure and behaviour

K. Mehlhorn, S. Naher

A library of efficient data types and algorithms e

E. -R. Olderog

Correctness of CONCUTrent Processes v v v v v v v v u v e e e e

B. Trakhtenbrot

Understanding nets (abstract)

COMMUNICATIONS

H. Andréka, I Németi, L Sain

On the strength of temporal proofs

J. H. Andrews

Proof-theoretic characterisations ef logic programming

E. Badoue]

Algebraically closed theories

F.S. de Boer, J. N. Kok, C. Palamidessi, J. J. M. M. Rutten
Control flow versus logic: A denotational and declarative model for

Guarded Horn Clauses« v v v v v v v v e e e e e

C. Calude, D. Vaida
Ehrenfeucht test set theorem and Hilbert basis theorem: A constructive

GHIMPSE = . 5 & & & 5 @ W 5 B A B E E S e e e s 8w e A e o e w a s

18

35

49

67

\'

B. Chlebus, K. Diks, W. Rytter, T. Szymacha
Parallel complezity of lexicographically first problems for tree-structured graphs
fextended abatract) s « « =« 5 s v » v 5 3 w5 ¥ v ® s wa & we ¥ & W wan 185

J. Dassow, J. Hromkovi&, J. Karhumaki, B. Rovan, A. Slobodova
On the power of synchronization in parallel computations 196

K. Diks, T. Hagerup, W. Rytter
Optimal parallel algorithms for the recognition and colouring outerplanar

graphs 5 @ s we wmoE ow o R s B G w aw Bw ow ow o E e R e e k@ 207
Ch. Elkan

Logical characterizations of nonmonotonsc TMSs 218
J. Farrés-Casals

Prouving correctness of constructor implementations 225

R. van Glabbeek, U. Goltz
Equivalence notions for concurrent systems and refinement

of actions (extended abstract) 237
M. G. Gouda, R. R. Howell, L. E. Rosier

System simulation and the sensitivity of self-stabilization (eztended abstract) . . . 249
L. A. Hemachanra, A. Hoene, D. Siefkes

Polynomzial-time functions generate SAT: On P-splinters 259
U. Heuter

Generalized definite tree languageso 0. 270
R. Holte, L. Rosier, 1. Tulchinsky, D. Varvel

Pinwheel scheduling with two distinct numbers 281
S. Iwanowski

Testing approrimate symmetry in the plane ss NP-hard 291
C. Jousselin, J-P. Moskowitz

Memory and algebra woE O R P OB G § MW W W E 305
B. Just

Integer relations among algebraic numbers g omow s o ow S14
J. N. Kok

An iterative metric fully abstract semantics for nondeterministic

dataflow (eztended abstract)o 321

W. Kowalczyk

Complezity of decision problems under incomplete information 331

vil

V. Manca, A. Salibra, G. Scollo
On the nature of TELLUS (a Typed Equational Logic Look over Uniform

Bpectfication] « « = « 5 5 5 w5 % v oW 4 W L m o5 B oW R WE & E M 5 B E 338
Ch. Meinel
Switching graphs and their complezityo . 350

J.-J. Ch. Meyer, E. P. de Vink
Pomset semantics for true concurrency with synchronization and recursion
(eztended abstract) B R B e s BR s MBS EE B R s 360

D. A. Mix Barrington, P. McKenzie
Oracle branching programs and logspace versus P
fedendedabatroet]) < = o » « s « o i 55 i @5 wE w8 s E s w b .« . . 370

D. T. H. Ng, B. J. Oommen
Generalizing singly-linked list reorganizing heuristics for doubly-linked lists 380

V. Palko, O. Sykora, I. Vrfo
Area complexity of merging 0 e 0 e e e e e e e e 390

P. Péladeau)
Logically defined subsets of N* T Y 397

U. Petermann
An extended Herbrand theorem for first-order theories with equality interpreted

in partial algebras L L L oL Lo L Lo oL 408
A. Petit) .

Characterization of recognizable trace languages by distributed automata 418
M. Regnier

Knuth-Morris-Pratt algorithm: An analysts 431
A. Saoudi

Pushdown gutomata on infinite trees and omega-Kleene closure of

context-free tree S€ls i i e e e e e e e e e e e e e e e 445

E. M. Schmidt, M. I. Schwartzbach
An smperative type hierarchy with partial products 458

M. Slusarek)
A coloring algorithm for tnterval graphs 471

B. Steffen, J. Knoop
Finite constants: characterizations of a new decidable set of constants 481

viii

B. Steffen
Optimal data flow analysis via observational equivalence

V. A. Stetsenko

One more method for proving lower bounds on the formula complezxsty of

boolean functions

D. Szczeparfiska
The Hoare-like verification system for a language with an ezception
handling mechanism

A. Weber
On the lengths of values tn a finite transducer

P. Weil
On varieties of languages closed under products with counter

J. Wiedermann
On the computational efficiency of symmetric neural networks

S. Yoccoz
Constructive aspects of the omega-rule: application to proof systems in
Computer Science and Algorithmic Logic

M. Zaionc
How to define functionals on free structures in typed lambda-calculus

LATE PAPERS

A. Mazurkiewicz
Concurrency, modularity and synchronization (invited paper)

F. Ablayev _
On comparing probabilistic and deterministic automata complezity of
languages s W 0% B OB @ § B B 8 B S 8 % 8 F B K

492

503

511

523

534

545

553

566

577

599

FROM SPECIFICATION LANGUAGES
TO SPECIFICATION KNOWLEDGE BASES:
THE PTO APPROACH
Valery N. Agafonov
Tsentrprogrammsystem (Centre of Program Systems)
170650 Kalinin USSR
Abstract: We discuss the conceptual agpect of the situation in
which prdgram specifications are developed and used. Then we show
limitations of specification languages as a way to organize conceptual
means used in developing specifications and usging them.Finally, we
describe an approach to overcome these limitations by means of the
PTO knowledge based system which can also serve for providing speci-
fiers and users of specifications with the necessary elements of the
mathematical culture.

1 The conceptual aspect of the specification situation

I should like to show limitetions of specification languages as
an ingtrument for working with mathematical notions in the course of
developing and using program specifications and then fto point such
a direction that following it we can overcome these limitations to
a considerable extent. With that end in view, we have to begin from the
very beginning and to take up the question: what are the essence and
the purpose of specifications? .

First of all it is important to realize the delusiveness of
simple and short answers to this question which are widespread in the
literature. A typical specialist in the field of mathematical founda-
tions of computer science will say most likely that & specification
of a program is just & mathematically precise formulation of the
~problem which must be solved by the program. Since the main property
of any program is its correctness and the correctness makes no sense
without a gpecification then the essence and the purpose of specifi-
cations for such & person are in making it possible to comnstruct
correct programs or to verify programs. It is the truth, but only a.
part of the truth and not the whole of it.

It is often said that a specification has to describe what the
program does, but not how it does this. Here is also a portion of
the truth, but a portion of the falsehood as well, for there exist
situations when the essence of a problem is just in how something is
done,

In order to approximate to & more truthful answer to the above
question, one has to distinguish and to estimate essential aspects
of the specification situation, that is, the situation in which prog-
ram specifications are developed and used. At least the following
four aspects are worthy of a careful analysis:

1) the described problem: its nature and the natural renge of
notions in which the problem arises;

2) the people who take part in developing and using specifica-
tions « and especially their conceptual worlds or the stocks of no-
tions which they have at their disposal;

3) the spectrum of specifications which are possible for a given
problem, and the criteria for the choice of appropriate specifications
from the spectrum;

4) the conceptual means. (notions, mathematical structures, ways
of description, etc.) which could come useful for description of the
given problem and which exist in the literature, in gpecification
languages or in the heads of the people involved or not involved in
a given préblem.

In itself the notion of program specification must be considered
a8 relative = with respect to the specification situation including
the mentioned asgpects. The ideal specification in & given concrete
situation would be such a description which will be accepted by given
people with the available to them conceptual basis &s the most straigh-
tforward, simple, natural, and clear formulation of the given problem.
Therefore, we can say that the essence and the purpose of sgpecifice-
tion are in achieving understanding and explanation of a considered
problem by such means which are convenient or at least acceptable for
the given persons in the given situation. It can turn out that the
same description in different situations does not meet the ideals of
these gituations. In order to bring together a specification and an
ideal, one has to change the spécification or the situation, or both.
This mutual adjustment of specifications and situations is an impor-
tant feature of my approach.

In gection 1 I discuss the aspect of the specification situation
which concerms the conceptual means. In section 2 sgpecification lang-
uages as a way of the organization of conceptual meuns are considered,
end in section 3 I present my approach to the organization of concep-
tual means by a specification knowledge base called PTO.

Conceptual means really used in program specifications or poten=-
tially useful are extremely varied. I systematized them in survey [1]
and book [2] having distinguished and described several families of

classes of conceptual means which are one of ways of orgeanizing con-
ceptual means in the PTO system. The first family of classes (in PTO
its name is IHC - "Internelly Homogeneous Classes") consists of classes
of internally homogeneous means that have a definite mathematical

unity and group around some central idea. It includes such classes as:

a) table means (notions grouping around the idea of a table);

b) equalities and rules of substitution (notions of an equality
or an equation with various kinds of gemantics (including semantics
% terms of rules of substitution) and related notions of rewriting
systems, production systems, their variants end generalizations),

¢) logical means (means of the first-order logic and other lo-
gicsa),

d) graph means (graphs, trees, networks, dimgrams with different
semantical superstructures),

e) operations and expressions (operations on objects of the most
various nature and ways of combining them by expressions),

f) procedural means (actions changing states and means of order-
ing and combining actions),

g) means of modularization, typing and structuring (notions of a
type, & schema, a module, & frame, a mathematical structure),

h) means of naming (ways of naming, various variants of the
notion of a variable, scopes of names, etc.),

i) axiomatic means (notions related to axiomatic methods of
description).

For each of the above listed classes the principle according
to which means are included in the class is fairly clear from the
mentioned name of the class and several examples of means included
in it, though this principle can not be formulated as a mathematical °
definition and there is no practical necessity in such a definition.
Classes mey intersect, but basically they are different. Each class
is the embodiment of some essential layer of human thinking, a special
way or a style of expressing human thought.

Another family (in PTO called GMN) - “General Mathematical Noti-
ong") includes three classes of means used for describing three fun-
damental kinds of mathematical objects: a) functions, b) sets, c) re-
lations. It is done to explicitly show particular significance of
functions, sets, and relations in specifications and algso demonstrate
the variety of specific ferms and ways of their description.

Similarly, the GCSN family ("General Cemputer Science Notions")
of classges of notions playing a fundamental role in computer science
is formed. It includes, for example, the MOC class ("Models of Com-

putations") in which each notion is a model of computations (finite
automaton, pushdown automaton, model of computations in terms of re-
write rules, etc.)e. This class demonstrates the variety of models

of computations and ways of their description. The other two classes
of this family (DESM and OPSM) consist of notions related to denota-
tional semantics and operational semantics, resgpectively.

In a real situation the stock of notions available to given
people is limited by a part of the above listed classes. Therefore,
explicitly distinguishing them helps widen the horizon and activate _
search and use of édequate means of description. h

An entirely different principle of constructing a family of
classes is to form each class from the notions useful for describing
problems of some application domain. In the family called LAP ("large
Areas of Programming") classes correspond to large areas established
in programming and information processing; such as a) languages and
language processors (compilers, etc.), b) data bases and knowledge
bases, c) date processing oriented to the structure of the data pro-
cessed, d) process control and action control (real time systems,
etc.). We mean the areas which are fairly general and universal.
Distinguishing classes of notions corresponding to such areas consgi-
derably orders the variety of conceptual means.

The above mentioned classifications embrace the notions from
which specifications are constructed and composed of. Besides these
notions, I distinguish and gystematize the conceptual means (ideas,
congiderations, observations, recommendations) which are not included
in specifications, but concern ways of constructing specifications
and the situations in which specifications are developed and used
.(i.e. specifications are constructed not of them, but by them).

The conceptual means of such & kind we call pragmatic and in PTO
they are grouped into a specific family of articles (PRAGM) which
includes the following classes of articles:

a) logical and mathematical discipline requirements which should
be met in the definitions construction,)

b) recommendations on how to write mathematics intelligibly and
develop the description of a problem and things related to it,

c) systematized results of psychological experiments and empi-
rical observations of experienced, knowledgeable persons which
shed light on how people understand definitions constructed by these
or those means, what difficulties they encounter, and what mistakes
they make and how often.

Thus, our systematization of conceptual means embraces both the

internal aspect of specifications (notions within specifications)
and the external aspect of specifications (ideas and considerations
outside specifications). Both these aspects are important and should
be considered when specifications are constructed and used. I deli-
berately support them by the PTO system.

2. Specification languages as & way of qrganization
of conceptual means
o To organize something means, in general, to introduce some order,
system or discipline useful for achieving some purpose. Here we con-
sider the organization of conceptual means for achieving the purpose
of specification discussed in section 1. A widely used and already
traditional way of the organization is a specification language.

I distinguish two aspects in a specification language -~ the
formalization aspect and the aspect of combining particular concep-
tual means in the language. The essence of the former is to fix the
syntax and semantics of the langusge by & mathematically precise waye.
The essence of the latter is to select conceptual meansg included in
the language and to bring them into a system in accordance with tle
prineciples on which the language is based.

The formalization aspect includes a degree of formalization.

The minimal degree of formalization is to fix only syntax, while the
description of semantics is not strictly regulated and remains on a
more or less informal and intuitive level. The maximal degree of
formalization is completely formalized syntax and semantics.

In principle, the latter provides preciseness of specifications,
but can have a negative impact on their understandability. The prob-
lem is to formelize the description to such an extent that provides
preciseness with the least detriment to understandability. Formality
is not identical to preciseness. A formael language is an extremely
refined form of the mathematical language, which is such a specific
part of the natural langusge, which is based on mathematical objects
and ways of manipulating them.

The mathematical language is distinguished from a formal language
by flexibility, veriability, absence of rigid fixation of syntax and
semantics. An incompletely formalized specification language can
appear to be closer to the mathematical language by its "explanatory-
power", by the provided capability to wrifte understandable and suff-
iciently precise specifications. However, if we want to use gpecifica-
tions as program prototypes executable on a computer, then those
aspecta of a problem, which should be represented by a prototype,
should be completely formalized in the language.

Thus, it is desirable to control the degree of formalization.
The fixation of a language limits or excludes the capability of such
a control.

The choice of details of & formalization of syntax and seman-
tics is arbitrary to a great extent. Some details should be fixed
only because in a completely formalized language everything should
be fixed, though it is not caused by the needs of the problems des-
cription. There are different styles or kinds of the syntax and
semantics description. Pixing a language, the description style is ',
usvally fixed, thus limiting capabilities to understand language
constructions. The fixation of these or those features of a language
almost always means the choice of one altermative from several pos-
sible and acceptable alternatives (points of view) and the rejection
of the remaining which, thus, are hushed up by the langugge. There-
fore, the fixation, as it is, required for providing unambiguous
understanding of language constructions produces some undesirable
"gide effect", which has a negative impact on understandability and
communicativeness of specifications.

More essential is the aspect of combining particular conceptual
means. Studying various specification languages, I distinguished
three general principles according to which a set of means included
in the languege is formed. The first principle I call "specialization
by domain", According to this principle, the means included in a
language are oriented to the description of a particular problem or
subject domain, i.e. they are the means adequate, if possible, to
the problems of this domain. When it is said about a gpecialized
programming or specification language, usually it means just such
a gpecialization.

An entirely different kind of specialization is "gpecialization
by means". Here the principle of the language construction is to
take as a basis of a language one kind (a specific class) of concep-
tual means. Such a language is oriented to means, but not to a domain.

The third principle of the language construction is to develop
a universal or general-purpose language. This language is not specia-
lized neither by means, nor by domain, it includes essentially hete-~
rogeneous means and does not limit its dpplication area in advance.
To such languages also belong the "wide spectrum" languages inclu-
ding means of different levels - from purely declarative to mgchine-
oriented.

To emphasize the difference between the language, in which
heterogeneous means of several classes are used, and the language

based on the means of one class, I call the former a polylanguage
and the latter a monolanguage. Usually the languages specialized by
domain and always the languages pretending to be universal are poly-
languages. For each class of means of the above mentioned IHC family
(besides the class of means of naming, which, in some way or other,
are used in all languages) there are monolanguages specialized by
means of this class - for example, table languages, equational lang-
uages, network languages, logical languages, etc. Many polylanguages
cau be characterized by pointing to, combinations of means of what
clagses are used in them. Thus, the correlation of languages with
the above classification of conceptual means clarifies their posi-
tion in the world of conceptual means of specification, and this
. clagsification serves as a coordinate gystem of this world.

The correlation of languages with the classification of means
clearly shows the essential limitations of the set of means used in
each particular language, = even in a polylanguage pretending to be
universal.

Expressiveness of a language with respect to a given problem
or subject domain is determined by the availability of conceptual
means adequate for this domain in the language. A language specializ-
ed by means provides expressiveness only for a relatively narrow
range of problems and domains to which the means embedded in it are
adequate. The shortage of expressiveness induces language designers
to create polylanguages. In its turn, for each polylanguage there
always are problems and ideas which induce the designers to enrich
it by new means or to turn to a new language with a richer set of
means. It should be noticed that these means must be provided by
the language directly, rather than be, in principle, constructed
from the means directly included in the language - as, for example,
in extendible languages or languages with the capability to define
abstract data types. The latter languages allow us, in principle,
to describe the desired notions, but the notions themselves are
outside of the languages, they should be either invented, or iaken
from or found somewhere.

Besides providing better expressiveness, a polylanguage is also
an attempt to embrace, systematize, and precisely describe some
var.ety of ideas. It also can be considered as a tool for communica-
tion between people and a common bagis for mutual understanding.
Thus, & polylanguage is intended to meet three fundamental needs in:
expressiveness, systematization and a common basis for mutual under-
standing. The function of a language as a means of exchanging ideas

and achieving mutual understanding between people dealing with prog-
ram specifications is, surely, expressed stroager in polylanguages
than in specialized languages, but not strongly enough. It is impoer-
tant that they do not contain, firstly, the means which allow people
to show relationships between different notions, points of view, and
representations, and, secondly, the means related to methodology and
pragmatics of specification development (above they were distinguished
into the PRAGM family).

In order to understand each other, people should be able to ™
recognize or to show relationships between different peints of view'
and different representations. Such a purpose is not stated for
specification languages at all. However, it is very important, because
the achievement of it strongly influences understamding &nd explana-
tion of specificationse.

3. The specification knowledge base PTO

PTO is the name of & knowledge based system for versatile support
of the program specification (the first letters of words "Practical
Theory of Definitions" in Russian). The system is intended for the
following basic variants of use:

1) orientation in the field of program specification and tutoring
in the gpecification as an activity,

2) receiving information about principles and methods of develo-
ping and using specifications,

3) receiving informetion about the notion the user interested
in (defining it more precisely, examples of its use, its synonyms
and homonyms, forms of its recording, its relationships to other
notions, points of view on it, literature on it), _

4) choice of notions and forms of their recording for describing
a particular problem,

5) choice of notions and forms of their recording for developing
a specification language or for describing a class of problems,

6) receiving information about existing specification languages
suitable for user's problems,

7) search of a suitable system for supporting the program speci-
fication,

8) choice of suitable representations of the notions which the
user is interested in, including representations used for prototyping,

9) search of bibliography on the aspect of the program specifi-
cation, in which the user is interested,

10) search of contacts with knowledgeable people in the field of

