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PREFACE

A large number of excellent text books have been written on the subject
of electronic circuits. Why, then, write another?

The answer is that in recent years books tend to emphasize the small
signal, linear aspects of the circuits. In so doing they certainly have contributed
to a clearer understanding of this phase of electronics, but we must face up
to a fundamental truth about electronic devices: their behavior is nonlinear.
If this fact is neglected, the consequences of nonlinearity, good or bad,
cannot be considered, and worse—may, in fact, be forgotten. Yet many of
these factors such as distortion, frequency translation and multiplication,
and periodic signal amplitudes in oscillatory circuits are of primary impor-
tance in many applications. Some texts touch on these subjects by considering
only the most gross features of nonlinearity through use of the piecewise
linear technique.

It seems, then, that there is need for a companion text to this literature—a
text which emphasizes the nonlinear character of electronic devices and its
effect in some sample circuit configurations. This book has been written as
such a supplementary text. As the title indicates, the methods used are
elementary and teachable at the undergraduate level.

It is inevitable that a text so conceived will include much review material.
Its inclusion, however, permits the establishment of a consistent method of
approach and notation. With the latter, I have used current standards,
despite the recent trend to depart from them.

vii
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Chapter ONE

ONE-PORT DEVICES

Electronic devices inherently exhibit rather complicated behavior: first,
their behavior is nonlinear; second, it is frequency dependent because of
capacitive and transit-time effects; third, it is corrupted by internally gener-
ated noise signals, and fourth, it may be influenced by environmental con-
ditions such as temperature. It is therefore rather difficult to find some
means for expressing all aspects of this behavior in a simplified form.

It is fortunate, however, that this is usually unnecessary since in any
given application of an electronic device not all these aspects are equally
important or relevant. For example, it is usually true that when the signals
applied to the device are so large that nonlinearity must be considered, they
are also so much larger than the internally generated noise signals that the
latter may be neglected.

Thus in any given application we seek a simplified representation of
only the cogent aspects of the device behavior, omitting those aspects which
have little or no effect in the particular application. This process of neglecting
irrelevant behavior and representing the important aspects in simplified form
is known as modeling.

In this book we shall be concerned primarily with the nonlinearity of
electronic devices and we shall use the measured terminal characteristic
curves of a device as the basic means of describing this at low frequencies.
Our attempts at modeling will then follow two paths: the first will be mathe-
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2 One-Port Devices Chap. 1

matical. Here we derive an equation giving an approximate fit to the device
curves, either in a gross manner, or over only a limited range. The second
path will lead to the arrangement of a set of linear circuit elements into a
configuration whose response approximates the device curves. Notice, then,
that we shall use three methods of approximating the performance of elec-
tronic devices—curves, equations, and circuit models. As might be expected
all three methods of specification are equivalent for a particular electronic
device only within the limits under which they are measured or derived.

From the point of view of modeling, we often face the problem of ob-
taining suitable device curves. This is because, at the present state of the art,
it is impossible to manufacture a number of electronic devices which have
identical characteristics even though they may have similar characteristics
and hence may be grouped together under a certain identifying type number
or designation.

A good example of this is afforded by Fig. 1-1 which displays the meas-
ured curves of the two sections of a 6AL5 twin-diode vacuum tube which
was chosen at random. From the curves we may note, for example, that at
e = 1.6 volts, the currents of the two sections, which presumably should be
identical, differ by roughly 8 per cent. It is not feasible for device manu-
facturers to furnish curves with each diode; instead the behavior of such a
device type is usually described by average curves (or average parameter
values) which are made available by the manufacturer. It must be remem-

10

w
/2
/

/||e

0 1 2 3 a
e, volts

Fig. 1-1. Characteristic curves for the two sectigns of a 6AL5 vacuum
twin diode. The inset shows a typical curve -for e large enough for
saturation and cutoff.



Sec. A One-Port Devices 3

bered, however, that any particular sample of the type may differ consider-
ably from these average specifications. In vacuum devices this deviation may
run as high as 420 per cent and in semiconductor devices as much as 450
per cent. The latter are quite temperature sensitive and even greater deviations
may occur when the operating temperature differs markedly from the
published values. For these reasons we find that manufacturers are often
reluctant to furnish even average curves for the semiconductor devices.

The analysis and design of electronic circuits, then, is not an exact
business when we work from published average data. If a basic error of up
to 50 per cent is present in specifying the device behavior, calculating circuit
performance to 3 or 4 significant figures is pointless. In fact in many instances
a chief concern of design is to minimize the effect of device parameter
variation.

A. NONLINEARITY, NONLINEAR RESISTANCE

Since we shall be directing our primary attention to the subject of non-
linearity, some clarification of notation should be made. At low frequencies,
electronic devices are basically resistive in nature, i.e., a curve (or family of
curves) in the current-voltage plane defines the device operation. Now if
a passive resistance element is linear, it may be described for all values of
e and i by the equation i = ¢/R, where R is the linear resistance. The cor-
responding curve in the i vs e plane would be a straight line through the
origin with a slope of m = 1/R. Notice that m has the dimension of con-
ductance and can also be symbolized by G, the conductance of the passive
element.

A nonlinear passive resistance, which we may represent by the symbol
%, will, then, depart from this ideal. Two examples are shown in Fig. 1-2.
At (a) we see a curve which is nonlinear in the usual sense that it is a curved
rather than a straight line. This sort of curve is said to display a soft non-
linearity.

/’1 i

(a) (6)

Fig. 1-2. Nonlinear resistance curves. (a) Soft nonlinearity.” (b) Hard
nonlinearity of piecewise linear form.



4 One-Port Devices Chap. 1

At (b) we observe a nonlinearity of a different type in that no curved
region is present. The curve comprises two linear segments with a “break-
point” or change of slope which, in this instance, lies at the origin. This type
of curve is often called piecewise linear, abbreviated PWL, and is said to
display a hard nonlinearity.

It is apparent that no single value of resistance, R, can be associated with
the nonlinear resistance in Fig. 1-2. By convention we define two resistances
as follows:

R, = static or total resistance
—£ (1-1)
i
r, = dynamic, differential, or incremental resistance
de
== 1-2
di (1-2)
It is apparent in Fig. 1-2(b) that R, = r, at any point, and further that R,
is constant for positive e and constant at a different value for negative e.
In Fig. 1-2(a), R, and r, vary from point to point and are never equal for
positive e. For negative e, however, and at the origin, R, = r, = co. As we
encounter other nonlinear characteristics that differ in some manner from
those of Fig. 1-2, we shall observe other properties of the total and incre-
mental resistances.

In the remainder of this chapter we shall consider the characteristics of
some common one-port or two-terminal, electronic devices. Their basic
behavior is described by a single # curve. We shall also investigate means
for modeling these characteristics.

B. VACUUM DIODES

The characteristic curves of typical vacuum diodes have the form shown
in Fig. 1-1 which is plotted for the 6ALS5 twin diode. Shown at the inset is the
curve for a larger range of positive e values. For large e where current is less
dependent upon voltage the operation is said to be saturated. In this satura-
tion region, which lies above the normal range of current and voltage, cur-
rent is limited by emission from the cathode. For negative e, i = 0, i. e.,
the current is cut off. The reverse voltage region is often called the cutoff
region.

B-1 POWER LAW

In trying to derive a mathematical model or equation to describe the device
curve, we find it is helpful to replot the positive e data, say of curve (1) in



