Research Monographs in
Parallel and Distributed Computing

ANDREW RUSHTON

Reconfigurable
Processor—Array:
a bit-sliced
parallel computer



RESEARCH MONOGRAPHS IN PARALLEL AND DISTRIBUTED COMPUTING

Andrew Rushton
University of Southampton

Reconfigurable
Processor-Array:
a bit-sliced
parallel computer

Pitman, London

The MIT Press, Cambridge, Massachusetts



PITMAN PUBLISHING
128 Long Acre, London WC2E 9AN

© A. Rushton 1989
First published 1989

Available in the Western Hemisphere and Israel from
The MIT Press
Cambridge, Massachusetts (and London, England)

ISSN 0953-7767

British Library Cataloguing in Publication Data
Rushton, Andrew

Reconfigurable processor-array.

1. Computer systems. Parallel — processor

systems.

I. Title II. Series

004'.35

ISBN 0-273-08799-1

Library of Congress Cataloging-in-Publication Data
Rushton, Andrew.

Reconfigurable processor array : a bit-sliced parallel computer / Andrew
Rushton.

p. cm.—(Research monographs in parallel and distributed processing)

Bibliography: p.

Includes index.

ISBN 0-262-68057-2 (pbk.)

1. Parallel processing (Electronic computers) 2. Bit slice microprocessors
3. Electronic data processing—Distributed processing. 1. Title. II. Series.
QA76.5.R865 1989
004'.35—dc19

All rights reserved; no part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or
otherwise without the prior written permission of the publishers or

a licence permitting restricted copying in the United Kingdom

issued by the Copyright Licencing Agency Ltd, 33-34 Alfred Place,
London WCIE 7DP. This book may not be lent, resold, hired out or
otherwise disposed of by way of trade in any form of binding or cover
other than that in which it is published, without the prior consent of
the publishers.

Reproduced and printed by photolithography
in Great Britain by Biddles Ltd, Guildford



Foreword

As one of the main editors of this series, it gives me great pleasure to be able to write this
foreword for one of the first monographs to be published.

Parallel processing is not a new field, but is sufficiently active now to require a series
such as this to bring up-to-date research or a consolidation of significant contributions into
a forum for wider dissemination. It gives me particular pleasure, however, in being able to
write this preface for a manuscript from one of my own research students, concerning a
project that has occupied much of my interest over the last five years: the Reconfigurable
Processor-Array (RPA).

Contrary to much recent opinion, highly parallel computer systems have been exploited
now for some time. The first ICL DAP, comprising 1024 albeit very simple processors,
was in operation over ten years ago. That period also saw the beginnings of major changes
in the electronics industry, with prophets such as Carver Mead taking a long, forward look
at the potential of MOS systems. The RPA array processor has its roots back in that
period, in the convergence of VLSI technology with parallel processing. Another
influence in the forming of the RPA project came from the seemingly unavoidable
dichotomy between the requirement for a fixed regular structure for implementation in
silicon, and the user’s requirement to represent operations and communications dictated
by applications data structures, not necessarily the same as the fixed silicon structure.

The history of this research project is long and very arduous, involving grant
applications to industry, SERC and, when put in motion, the ALVEY program. However
as is usual in any university environment, research work does not start and finish with
large research grants to lubricate that research; much significant work is carried out by
research students. Andrew Rushton was one such student; he was involved with the
research from the outset, and played a significant part in the design of the RPA
architecture. In the event the research was finally funded by the Alvey program under its
VLSI architecture section. Although the Alvey support was modest (the support was for a
university-only project, with industrial ‘uncles’), it provided a core of support for
simulation and software development, and facilities to take the project to a prototype chip
implementation.

This monograph is primarily concerned with the silicon architecture, and explores the
synergy between VLSI technologies and parallel cellular architectures. As well as the chip
implementation, on which this monograph is based, this Alvey-funded research project
investigated most aspects of the RPA concept, from controller and host system design,
through early program development tools, to applications investigation.

The common element, or binding, of the different aspects of this work on the RPA
computer system has been a micro-program development tool, based on a low-level
simulation of the RPA chip and controller. Using this software, it has been possible to
develop and evaluate low-level code, and to iterate the silicon architecture, before it was
committed to processing. The work within this group was therefore very organic, and
although the divisions of responsibility were quite specific, many of the advances
made can be attributed to the group as a whole. I would therefore like to add my



acknowledgement at this opportunity to Alvey for funding this work and also to Adriano
Cruz, Jimmy Stewart and Russel O’Gorman.

This monograph, then, gives the view of the research project from the position of the
silicon designer, Andrew Rushton, but this is quite appropriate as it is in the silicon
implementation that we find both the drive and the constraints on the RPA architecture.
This is as ever the two-edged sword of technology.

More as a postscript to this work than a preface, some comments are appropriate
concerning the outcome of the project. At the time of writing this foreword, the RPA
project had come to its conclusion. Funds are not available to take this work to a full
production prototype, nor would we wish to do so, as this research has inevitably revealed
limitations in the RPA design, which have become apparent as our understanding of the
problem has increased. The work is still proceeding, but based on a more abstract model
for a virtual systems architecture for concurrent data operations (also funded by Alvey).
RPA II will be an implementation of that system!

My hope is, therefore, that this monograph will act both as a case study on a particular
design strategy and as background to further research. Perhaps what has been discovered
in this design cycle for the RPA is that the VLSI/parallel processing synergy will have to
be extended to more abstract problem-solving paradigms, before a true exploitation of the
technology can be achieved. Neither can proceed without a thorough understanding of the
other; moreover, with the rate at which the technology advances, this knowledge is at best
a moving target.

Chris Jesshope



Contents

List of figures
Glossary

1 Introduction

2 Introduction to parallel computers
2.1 A brief history of parallel computers
2.1.1 First proposals
2.1.2 The first word-slice parallel computers
2.1.3 Bit-slice architectures
2.2 Types of parallel computer
2.2.1 The Flynn classification
2.2.2 Inter-processor communications
2.3 Why choose a processor-array?
2.3.1 SIMD versus MIMD
2.3.2 Distributed network versus lumped switch
2.3.3 Topology of the network
2.3.4 Conclusions
2.4 Applications of processor-arrays
2.4.1 Meteorology and oceanography
2.4.2 Earth resources
2.4.3 Medical
2.4.4 Engineering design
2.4.5 Signal processing
2.4.6 Artificial intelligence
2.4.7 References
2.5 A case study of two SIMD networks
2.5.1 The Distributed-Array Processor (DAP)
2.5.2 The Connection Machine 23

— et R e e e e b e e el e e e e b
XAV TN UNUNDAWLWWLWRDNRN— OOV WLwun W sk

3 Architecture of the Reconfigurable Processor-

Array 27
3.1 System description 27
3.1.1 Overview of the RPA system 27
3.1.2 Simulation and micro-code development 30

3.1.3 Micro-controller interface to the
array 33
3.1.4 Data stream interface to the host 34

3.2 Adaptive parallelism and reconfigurability 35



3.2.1 The problem with fixed networks
3.2.2 A solution - intermediate modes
3.2.3 Hardware support for intermediate modes
3.2.4 Intermediate mode add and multiply algorithms
a) Addition
b) Vector mode multiplication
¢) Intermediate mode multiplication
3.2.5 Architecture of the bit-slice PE
3.3 Data storage in the array
3.3.1 Storage on existing processor-arrays
3.3.2 On-chip storage
a) Word store
b) Bit stores
3.3.3 Off-chip storage
3.4 Conditional operations
3.4.1 Global conditions - the status flag
3.4.2 Local conditions - activity control
3.5 Floating-point enhancements
3.5.1 Problems with SIMD floating-point operations
3.5.2 Basic floating-point algorithms
a) Multiplication
b) Addition
3.5.3 Hardware for sign-magnitude
arithmetic
3.5.4 Hardware for mantissa normalisation
3.5.5 Mantissa alignment
3.6 A description of the RPA PE
3.6.1 Instruction and ALU control field
3.6.2 External RAM port and host interface
3.6.3 Activity stack
3.6.4 Bitstack
3.6.5 Wordstack
3.7 RPA performance estimates
3.7.1 Integer addition
3.7.2 Integer multiplication
3.7.3 Floating-point routines
3.7.4 Applications

4 Implementation of the RPA processor chip

4.1 Choice of technology and design rules
4.1.1 Choice of manufacturing technology
4.1.2 Generic design rules
4.2 Design methodology
4.2.1 Clocking scheme
4.2.2 Layout of 16 PE chip
a) Exploiting regularity in the layout

36
36
38
43
43
43
46
47
47
47
49
50
54
54
54
54
56
57
57
57
58
59

61
62
65
65
65
74
75
76
76
82
82
83
84
85

89

89
89
90
92
92
94
94



b) Micro-control bus distribution
c) Neighbour interconnect and off-chip RAM
4.2.3 Layout of 1 PE chip
a) The latch element
b) Pass logic
4.2.4 Design for testability
a) Go/no-go testing
b) Debug testing
4.2.5 Gate Matrix Layout
4.2.6 Simulation and modelling
a) Modelling restoring logic
b) Modelling interconnect
4.3 Design of the PE components
4.3.1 The Bitstack and Activity stack
4.3.2 The Wordstack
a) Static RAM
b) Barrel shifter
c) Registers
d) Operand bus interface
4.3.3 The ALU and bit-slice control block
a) The ALU
b) Neighbour interface
¢) Result bus switches
d) Off-chip RAM port
e) Assembling the ALU and bit-slice control block
4.4 Chip packaging

5 Conclusions

5.1 Summary

5.2 Evaluation of the architecture
5.3 Future directions

References

Appendix A - A register transfer description of the
PE and chip

A.1 The specification language
A.1.1 Control structures
A.1.2 Manipulation of variables
A.2 Description of the PE and chip
A.2.1 Neighbour communications network
A.2.2 PE instructions and ALU functions
A.2.3 External RAM-port and host RAM interface
A.2.4 Activity stack
A.2.5 Bitstack
A.2.6 Wordstack

94

96

96
100
104
104
105
105
108
110
110
112
113
113
117
117
125
125
129
129
129
136
136
136
139
139

145
145
146
148

151

161
161
161
162
164
164
166
170
171
172
172



1 Introduction

It was in 1909 at the Cavendish laboratory, Cambridge, that they drank a toast 'To the electron,
may it never be of use to anyone’

Cyril Connolly

Observer 1977

This book describes the development of a parallel computer of the Single Instruction-stream,
Multiple data-stream (SIMD) class. It is a type of SIMD computer known as a processor-array;
the computer described in this book is known as the Reconfigurable Processor-Array or RPA.

Processor-arrays have established themselves as an inexpensive form of parallel computer,
which are suitable for a wide range of highly parallel applications. They achieve their
performance by huge replication of simple processors, known as Processing Elements or PEs,
rather than using a small number of complex processors or special functional units. This
performance is achieved without recourse to special circuit techniques such as pipelining or
special high-speed technologies such as Emitter-Coupled Logic (ECL). Furthermore, in a
processor-array, only the processing and data memory circuits are replicated. This is because the
control circuits and program memory are shared by all of the PEs in the array; the PEs all
perform the same instruction which is broadcast to them by the single controller, but on different
data.

Because processor-arrays are highly replicated structures, they are excellent candidates for
large or very large scale integration (LSI or VLSI). By integrating one or more PEs onto a single
chip, a complete processor-array can be built using one chip type. This allows development and
fabrication costs for this single chip type to be spread over a large number of chips, even if only
a few machines are built. This is an important consideration in the low-volume scientific
applications market.

Unfortunately there are some situations in which the small-grain parallelism of a SIMD
architecture is inefficient. The purpose of this book is to investigate enhancements to the
conventional bit-serial PE, which improve its performance in these situations whilst still
maintaining the advantages of flexibility and simplicity.

One of the problems is that the large, fixed, parallelism of a processor-array can only be
fully exploited by an equally large parallelism in the data to be processed. If the data being
processed does not have this parallelism, some PEs are not used, with a proportional decrease in
potential processing performance. The single instruction stream of a processor-array means that
these wasted PEs can not be used for another task unless there are many identical tasks to be
performed.

A processor-array is most viable if one or more PEs are integrated on a single LSI or VLSI
chip. There are already several processor-arrays of this type on the market which will be
discussed in chapter 2. However, these designs have also tended to depend on commercial RAM
chips for the PE storage, and so a memory-processor bottleneck exists, limiting the processing
speed to the bandwidth of the memory chips. If temporary storage is incorporated onto the chip
then performance can be immediately improved with only minor alterations to the processor
architecture.

An alternative way of looking at this problem is to consider the number of buses feeding
data to the ALU. For example, for a typical arithmetic operation, there will be two operands

1



passing from memory to the processor, and one result passing from processor back to memory.
Therefore a 3-bus architecture could conceivably achieve maximum ALU throughput. If less
than 3 buses are used, an accumulator architecture results in which a large proportion of time is
used transferring data between main memory and the accumulator. Thus, by adopting
conventional RAM as the only PE store with only one bus to the ALU, the operations to read the
operands from memory and to write the result to memory have to be carried out sequentially,
with an immediate penalty in ALU throughput. Multiple-bus memory access requires only that
some memory is integrated onto the chip.

It can be shown that, for simple operations, a large array of bit-serial PEs is a better source
of processing power than a small array of complex processors, due to its flexibility [2.5].
However, there are some areas in which this argument breaks down and bit-serial processors can
not possibly compete with specialised hardware. Examples of this problem are found in integer
multiplication and nearly all floating-point operations. However, it is possible to improve these
operations with relatively simple special-purpose circuits.

This summarises the areas of processor-array architecture that are researched in this book.
Solutions to these problems are developed and a PE architecture incorporating these new ideas
is proposed. This architecture has been implemented as a chip design to investigate its suitability
for VLSI implementation.

The RPA project was a group project involving five people, each of whom had different
responsibilities. Chris Jesshope was the instigator of the project in 1983 and has been its
supervisor throughout. The project is split into four areas: simulation and program development
software by Jim Stewart [1.3, 1.4], applications programming by Russell O’Gorman [1.8, 1.11],
control path design by Adriano Cruz [1.6] and data path design by myself. This book covers the
data path design of the RPA. However, results of other team members’ work have influenced the
architectural design of the PE. In particular, feedback from the simulations and the applications
programs have helped considerably in the development of the architecture. Some of this work
has been reproduced in sections 3.1 and 3.7 of this book for completeness.

The main text of the book is in three large chapters and there is also a conclusion and an
appendix.

Chapter 2 reviews the history of parallel processing from the first tentative suggestions in
the mid-19th century to the explosion of interest in parallel processing in the late 1970s and early
’80s. The different types of parallel computer are described and the reasons for choosing a
processor-array from amongst the wide range of options available to the computer designer are
discussed. The chapter concludes with a brief summary of applications followed by case studies
of two commercially available SIMD arrays: ICL’s Distributed-Array Processor (DAP) and
Thinking Machines’ Connection Machine.

Chapter 3 discusses the high-level organisation of the RPA and investigates the
disadvantages of conventional processor-arrays. A number of problems are identified and
possible solutions to each problem are proposed. A PE architecture is developed from these
proposals which incorporates all of the proposed improvements. The chapter concludes with a
functional description of this architecture and estimates of its processing performance for some
standard arithmetic functions.

Chapter 4 describes an implementation of the PE architecture developed in Chapter 3. The
implementation is a VLSI chip containing 16 PEs. The description takes a top-down approach,
introducing and discussing issues as they become relevant. The description culminates in a brief



overview of the circuit design and layout of the individual PE components. Finally, packaging
of the 16 PE chip is discussed.

Chapter 5 is the conclusion of the book and suggests areas of further research on
processor-array architectures.

There is also one appendix containing a high-level formal description of the PE in a
register-transfer language.






2 Introduction to parallel
computers

The historical sense involves a perception not only of the pastness of the past, but of its presence
TS Eliot
Tradition and the individual talent
1919

We have constantly to check ourselves in reading history with the remembrance that, to the actors
in the drama, events appeared very different from the way they appear to us. We know what they
were doing far better than they knew themselves

Randolph Bourne

Youth and Life

2.1 A brief history of parallel computers

The history of computing has been shaped by the technology available to the engineer.
Computers have been limited in performance by the state of the art of technology, and by the
cost of that technology; indeed, designers think within the confines of what is possible with
existing techniques [6.2]. Thus Charles Babbage conceived many of the principles of what is
now called a von Neumann computer but in a purely mechanical form. He didn’t build his
computer - the Analytical Engine - because of the prohibitive cost of the precisely machined
components.

Two characteristics of electronic component technology have brought about the interest in
parallel processing. One is the rapid decrease in cost of a particular level of technology once it
has become established, making that technology economic to use in large volumes. This makes
it more attractive to build a computer out of replicated state of the art components than to
attempt to advance the state of the art. The second is that computing power has had to expand
faster than circuit speed could allow, to supply the rapidly increasing (and accelerating) demand
[2.7]. Some of the increase in computer power has been achieved by developing existing
architectures - for example by increasing the word-length of the processor. Some has been
achieved through better algorithms. However, it has become apparent that only through the
exploitation of parallelism can the future demands of users be met.

This section traces the development of the Single Instruction stream, Multiple Data stream
(SIMD) class of parallel computers, in which only the data processing components are
replicated. These Processing Elements (PEs) share a single controller. The arguments for
choosing this type of parallelism will be discussed later in this chapter.

2.1.1 First proposals

The first notable reference to multi-processing was by Menabrea in 1842 [2.10] in his report on
meetings with Babbage in Turin. These proceedings were published in French but were

5



translated and annotated by Ada Augusta, Countess of Lovelace - who took a great interest in
Babbage’s work and worked on the programming of the Analytical Engine [2.9]. The suggestion
was made that in repetitive work, several results could be calculated simultaneously. How this
was to be achieved within the design of the Analytical Engine was never explained.

The Analytical Engine was never built, although the processing unit was built after
Babbage’s death. The ambitious nature of Babbage’s ideas was a contributory factor in this
demise - the Analytical Engine was to have a 50-digit decimal word with a 1000 word store.
Each word of the store was a column of numbered disks with one digit per disk and the central
processor - or “mill’ as it was called - worked on the whole word in parallel using a ripple carry
technique. Babbage’s machines were purely mechanical devices and required accurately
machined components - the expertise needed to manufacture these components did exist as
demonstrated by the examples of the Difference Engine (a calculator as opposed to a computer)
which were built. However the expense would have been enormous and the design of the
Analytical Engine was mainly an irﬁEl}ectual exercise.

The work of Babbage was*not surpassed until the advent of electronics revolutionised
computers a century later. A/geod survey ofthis early period is contained in Bell and Newell
[2.4]. The first stored program computer to go into operation was the Manchester Mark 1 in
1948 [2.11, 2.12]. These early electronic computers were very simple to minimise the number of
components, but it was realised that the new technology of electronics could make parallel
processing possible.

The first electronic computers used vacuum tubes as their main active component, though
the storage medium had to be a different technology to achieve sufficient capacity. The Mark 1
used a cathode-ray tube (CRT) as its storage medium [2.13]. Data was written to the screen as
dots and dashes which were retained for tens of milliseconds by the phosphors; periodic refresh
was needed to retain the data indefinitely. The CRT storage had a number of benefits - it was a
random-access memory and stored words in bit-parallel format. Initially this storage medium
had a capacity of 32 words of 32 bits with addressing facilities for up to 256 tubes (a possible
capacity of 8k words). Other machines used mercury delay-lines to store their data (e.g. the
Univac [2.14] which had 100 10-word long delay lines as its main store). These were bit-serial,
word-serial storage devices so programs had to take into account the inherent latency of the
store. Delay lines did not have the capacity of the CRT storage nor the convenience of random
access. Furthermore they needed to be made to very exact tolerances of delay, whereas the CRT
design was far less critical.

Although von Neumann suggested in 1952 that a square array of identical processors
could be used as a general automaton [2.15], the first hardware design of an electronic parallel
processor is attributed to Unger [2.16]. His 1958 proposal suggested a 2-dimensional grid of bit-
serial processors as an architecture for spatial problems such as image processing. Each
processor was connected to its four nearest neighbours to allow inter-processor communication -
a natural choice for a computer working on 2- or 3-dimensional space. The paper included
circuit diagrams and some elementary picture-processing algorithms. However, he
acknowledged that the state of the art technology - thin-film components and ferrite core storage
were just being developed - made the construction of such a machine an awesome task. Unger’s
computer wasn’t built but it is commonly considered to be the common ancestor of all
subsequent 2-dimensional grid architectures.



2.1.2 The first word-slice parallel computers

The SOLOMON computer design of 1962, described by Slotnick and Borck in [2.18], went one
step closer to completion, with some of the circuits being constructed [2.19]. By this time small-
scale integrated (SSI) bipolar technology was being used with one latch or gate per package.
Using this technology a SOLOMON PE fitted on a single circuit board. The proposal called for
a minimum system of 256 PEs arranged as a 32x8 array. As in Unger’s design, each PE was
connected to the four nearest neighbours. This connectivity carried over the array boundaries -
the rectangular array could be configured as either a rectangle, a cylinder or a torus by
connecting appropriate array edges together.

The SOLOMON PE consisted of a bit-serial ALU, circuitry to control the routing
network, local memory and local on/off control (activity control) so that each PE had the option
of obeying or ignoring instructions depending on the value of local data.

Although the SOLOMON computer was not-quite~sampleted, the expertise gained in
designing it led to the development of the ILETAC 1¥. This was an extremely important
computer and had a strong influence on all aspeats@t computer engineering. Work started on the
ILLIAC1V in 1965 under the leadership of Daniel Slotnick [2.20y 2.21, 2.24, 2.25]. Although
based on the SOLOMON architecture, the ILLIAC IV wasiatmfich more powerful machine.
Technology had advanced by the mid-60s to the stage” of SHI bipolar logic and thin-film
memory, but the design of the ILLIAC IV set out to-push the teChnology forward. The proposal
called for the use of Medium Scale Integration (MSI) ECL throughout, with about 20 gates per
chip. A complete new logic family was to be developed by Texas Instruments for this purpose.
This ambitious approach was the main cause of ILLIAC’s problems which resulted in a time
over-run of about 5 years and a reduction in the performance of the eventual machine by an
order of magnitude over the proposal.

The initial design for the ILLIAC IV called for 256 64-bit floating-point processors giving
a hoped-for total performance of 1 Gflop. The PEs were divided between 4 quadrants, each of
which was an array of 64 PEs working in synchronisation. Thus each quadrant was a SIMD
computer. These quadrants could be synchronised to make a 256 PE SIMD array or they could
be independent - making a Multiple-SIMD (MSIMD) architecture. The PEs were connected in a
string with extra connections to neighbours 8§ PEs away in either direction. This form of
interconnect is essentially a square array with the edges connected as a torus but with the row
wrap-round connections offset by one row to make a spiral. The ends of the spiral could be
connected together or they could be used as the array’s I/O ports.

Only one quadrant of the ILLIAC IV was ever built due to cost and time overruns. It was
delivered to NASA Ames Research Centre in 1972 although reliable service was not achieved
until 1975 after extensive hardware debugging work [2.23].

Although the ILLIAC IV didn’t achieve the objectives of the original proposal, the single
quadrant machine - with a performance of about 50 Mflops - was still one of the most powerful
computers available at the time (although the CRAY 1 was released in 1976 and has an
estimated performance of over 100 Mflops, see Hockney and Jesshope [2.5]). It was used to
perform the aerodynamic simulations required by NASA and a lot of work was done on parallel
languages and algorithms to exploit the architecture fully [5.1, 5.2, 5.3, 2.22]. As well as being
influential in these fields, the construction of the ILLIACIV pushed forward two important
technologies in the field of micro-electronics. Texas Instruments (TI) was contracted to produce
a family of MSI ECL chips and although development problems with these chips meant that
they were not ready on time to be used in the ILLIAC IV they made ECL a usable technology

7



for high-speed logic. Nevertheless, the ILLIAC did use ECL (SSI) throughout and was the first
computer to do so. The other development that was pushed ahead was the bipolar RAM chip.
ILLIAC IV was intended to use thin-film memories but the delays in TI’s work on the ECL
chips led to space problems on the circuit boards (more chips were needed for the logic than had
been planned) and so a more compact memory technology was sought. Fairchild was at the time
developing bipolar RAM chips and they eventually supplied the 256-bit RAMs used throughout
the ILLIACIV. This made it probably the first mainframe to boast all-semiconductor main
memory.

The design of the circuit boards - 12-layer PCBs - required the development of a design-
automation system which was also one of the first of its kind.

Burroughs was the main contractor for the ILLIAC IV project and they went on to develop
their own parallel computer known as the PEPE [2.26, 2.27] which was an ensemble (an array
with no communications network) of 288 associative processors intended for radar processing
tasks for the defence industry. The project started in 1968 and by 1971 the prototype PEPE had
been built using standard TTL logic. PEPE was redesigned using custom LSI ECL chips for the
production version released in 1976. The 32-bit floating-point PE contained 80 chips of 12 types
plus memory (32 1kbit chips). Of these 12 different designs, 9 were custom LSI chips and the
rest were semi-custom chips. This marked a massive improvement over the prototype, with the
PE occupying a twentieth of the area of the TTL implementation due to a twenty times reduction
in chip count.

The experience gained in these two projects was put to use in the design of a new type of
parallel computer, the Burroughs Scientific Processor (BSP) [2.28, 2.29, 2.31]. Work on this
project started in 1973.

The BSP used a different approach to parallelism than previous parallel computers.
Instead of replicating the processor-memory combination, the BSP had separate arrays of
processors and memory units connected by two crossbar switches - one switch for each direction
of data flow. Sixteen 48-bit floating-point processors were used with seventeen memory units -
Burroughs used a system of prime memory banks to minimise the risk of conflicts (several
processors trying to access the same bank) when working with matrices [2.30].

A prototype BSP was built in 1978 and this had a performance of about 50 Mflops - about
the same as the ILLIACIV. However, the project was cancelled after completion of this
prototype and no commercially available BSPs were released. Again one of the problems seems
to have been the choice of technology, despite Burroughs’ intention to keep the design within
the limits of the state of the art at the time. The design used an existing and well-tried MSI ECL
family mounted on standard circuit boards as used in the Burroughs range of mainframes.
However, they experimented with the new technology of CCDs (Charge-Coupled Devices) to
build a fast file store with a capacity of 8-64 Mwords, but it was prone to high data error rates.
This was later changed to MOS RAM but the project was scrapped before going into production.

Burroughs are still looking at parallel computers for the scientific community - they
proposed one of the two designs commissioned by NASA for the Flow Model Processor at their
Numerical Aerodynamic Simulation Facility (NASF) [2.32, 2.33] (the other was a pipelined
architecture from CDC). NASA’s interest stems from fluid dynamics calculations which are
essential for the simulation of space vehicles in the atmosphere. The proposal was for a 512
processor machine with a performance around 1 Gflop. The architecture is similar to the BSP in
that it consists of separate processors and memory connected by a multi-stage switch. The



memory is organised as a prime number of banks (521 banks in this case) to avoid access
conflicts in the same way as in the BSP.

2.1.3 Bit-slice architectures

In parallel with the development of these large processor-arrays with word-length processors,
the concept of bit-serial parallel processing was being developed. In 1960 Shooman suggested a
design for a conventional computer which could also address memory in columns instead of
rows to perform bit-serial calculations. This he dubbed the Orthogonal Computer [2.17]. He
realised that processing data vertically not only used simpler hardware due to the avoidance of
carry propagation problems, but also that there was greater flexibility both in the number of bits
processed simultaneously and in the word length of the data being processed. Furthermore he
realised that conditional branching was not possible on such an architecture, so included
provision for masking off bits during a calculation - a feature which is now known as Activity
control after the terminology used for the ICL DAP.

Shooman’s ideas were put into practice with the development of the STARAN associative
processor between 1962 and 1972 [2.34, 2.35]. STARAN is an array of 256 simple bit-serial
processing elements (providing logic functions only) connected through a multi-stage switch
called the flip network to a 256 bit wide multi-dimensional store. This store has a wide range of
access modes including bit-slice mode (1 bit from each of 256 consecutive words), word mode
(one 256-bit word) and other intermediate modes (for example, one byte from each of 32
consecutive words). The power of the multi-dimensional memory plus the flip network means
that most data manipulation tasks only use the PE for temporary storage. Thus the simplicity of
the PE is not a handicap for the type of operations for which the STARAN is intended - like
database management, text searching and image processing. The system can be built up of any
number of basic array units up to 32 - the systems described in the literature have 2 or 4 arrays -
all sharing the same controller. The technology used for the STARAN is off-the-shelf ECL logic
and 256-bit bipolar RAM chips. A later, airborne, version of the STARAN was proposed in
1978 [2.43]. This took advantage of developments in micro-electronics by using custom
CMOS/SOS (Silicon On Sapphire CMOS) LSI chips for the PEs and flip network. 32 PEs and a
32-bit wide flip network were fitted onto the custom chip; the memmory was implemented as a
hybrid containing 16 1kx4 MOS RAM chips - two hybrids were associated with each PE chip.

A British machine developed from the SOLOMON and Unger designs is the ICL DAP
(Distributed-Array Processor) [2.36, 2.37]. The DAP project started in 1972, with a prototype
completed in 1976 and the first customer model delivered to Queen Mary’s College, London, in
1980. The DAP uses bit-serial processing elements, like its ancestors, arranged in a square array
of 64x64 PEs (32x32 in the prototype). Each PE is connected to its four nearest neighbours. The
DAP is one of the examples described in more detail in section 2.5.

Meanwhile, the work on the STARAN by Goodyear Aerospace developed, after a brief
examination of electro-optics [2.39], into the Massively Parallel Processor (MPP). This was first
described in 1977 [2.40], but the design reached its final form in about 1979 [2.41, 2.43].
Although based on the STARAN associative processor, the MPP is also very similar to the
SOLOMON and the DAP. Goodyear were contracted to build the MPP by NASA to process
satellite images from their LANDSAT satellites.

The MPP is a straightforward processor-array with a 128x128 array of bit-serial PEs, each
of which has an ALU plus 1k of RAM. The flip network and multi-dimensional memory of the

9



