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Preface

The 25th Taniguchi International Symposium, Division of Mathematics, titled with "Pro-
spects in Complex Geometry" was held at Kyuzeso, Katata, July 31 through August 5, 1989, and
an international conference with the same title was held successively at Research Institute for
Mathematical Sciences (RIMS), Kyoto University, Kyoto, August 7 through August 9. The
present volume consists of papers based on talks given at the two meetings. The central subject
was complex structure and the emphasis was put on geometric aspects. The topics of the papers
range therefore over various materials from complex function theory in one variable to differential
geometry and algebraic geometry; e.g., the Teichmiiller theory, the deformation theory of special
complex manifolds, the moduli theory of holomorphic and harmonic mappings, and the cohomo-
logy theory on algebraic varieties.

The International Symposium at Kyuzeso, Katata, was fully and generously supported by
the Taniguchi Foundation. The international conference at RIMS, Kyoto University was jointly
supported by RIMS and the Taniguchi Foundation. The organizers wish to express their deepest
gratitude to Mr. Taniguchi and the Taniguchi Foundation for supporting the two meetings and
their warm hospitality, and to RIMS for supporting the second meeting. They are also very grate-
ful to Professor S. Murakami for serving the Taniguchi International Symposium as coordinator,
and last but not least to all the participants, speakers and the contributors of this volume.

All papers of this volume are in final form and no similar version will be published elsewhere.

July, 1990

Organizers
J. Noguchi (Tokyo Inst. of Tech.)
T. Ohsawa (RIMS, Kyoto Univ.)
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HYPERKAHLER STRUCTURE ON THE MODULI SPACE OF FLAT BUNDLES

Akira Fujiki
Institute of Mathematics, Yoshida College

Kyoto University, Kyoto 606, Japan

Introduction

Let X be a compact Riemann surface. Then by the results of
Hitchin [H1] and Donaldson [D] there exists a natural bijective corre-
spondence between the set % of isomorphism classes of stable Higgs
bundles on X with vanishing chern classes and the set % of equiv-
alence classes of irreducible complex representations of the fundamen-
tal group of X. It has turned out that such a bijective correspon-
dence still exists for any compact Kahler manifold of higher dimension
by the works of Simpson [S1,S2] and Corlette [C] (cf. also [JY]).
Moreover, Simpson [S3] has proved that  has a natural structure of a
quasi-projective scheme when X is projective, and that with respect
to this and the well-known similar structure on % the above corre-
spondence is homeomorphic.

On the other hand, in the case of a compact Riemann surface
Hitchin [H1] had shown that ®M has moreover a natural structure 6f a
hyperkahler manifold such that if f: Z - P is the corresponding Calabi
family (cf.(2.2) below), the fibers Zt are complex analytically iso-
morphic to R for all t = 0, «, and Z0 and Zm are isomorphic to M
and its complex conjugate respectively, where P -is the complex pro-
jective line. In fact, it was shown that the natural C*—action on

*
U:= P-{0,»} 1lifts to a holomorphic € -action on Z. The main purpose



of this paper is then to show that the same result is also true in the
higher dimensional cases at least when we consider only the set of non-
singular points. (See Theorems (1.4.1) and (8.3.1) below.) In fact,
the basic idea for the proof remains just the same as in [H1] in view of
the above mentioned results of Corlette and Simpson.

In Section 1 we shall formulate and state the results in the case
of vector bundles though we work more generally in the framework of
principal bundles, following the formulation by Ramanathan (cf.[R][RS]);
see [S2] for another approach to the principal case. In Sections 2
and 3 the basic definitions and results concerning hyperkahler mani-
folds and hyperkahler moment maps are summarized and the method of
hyperkahler quotients will be explained; here the emphasis is laid on
the case where the manifold admits a special Sl—action. In Section 4
we discuss the simplest but basic example of a hyperkahler vector space
which is already in [H1]. In relation with the description there, in
(4.7) we shall see how the hyperkahler structure on the moduli space
looks like in the simplest case of line bundles, a glance at which
could be helpful in understanding the general situation.

In the one dimensional case the hyperkahler quotient construction
leads directly to the moduli space in question, while in the higher

dimensional case the same construction leads only to an infinite di-

mensional hyperkahler manifold. The description of the latter is the
purpose of Sections 5 and 6. The result is stated in Theorem (6.6.1)
(cf. also Theorem (1.5.2)). The finite dimensional moduli space in

question turns out to be a hyperkahler subspace of the above infinite

dimensional manifold; this will be verified in Sections 7 and 8 using

the identification M = % mentioned above. In Section 7 we discuss
<

the non-flat case also. We prove in Section 9 the existence of the
moduli space of stable principal Higgs bundles in general as an analy-
tic space along the line of Ramanathan [R]. In the Appendix we have
included the proofs of certain results of Hithcin [H1] and Simpson [S1]
for the convenience of the reader.

This article was written without knowing the details of the content



of [S2]; as a result some part of the paper (e.g. the first part of Sec-
tion 9) could have been directly quoted from [S2], but we leave it in
the original form for lack of time.

During the conference Tsuji pointed out that in the projective case
the result could also be obtained by reducing to the one dimensional
case by considering the general curve section of X. In fact, this
would be possible by using the Higgs version of the theorem of Mehta-
Ramanathan due to Simpson [S2], though we hope that our direct construc-

tion has its own interest.

1. Statement of Results

(1.1) Let X be a connected compact Kahler manifold with a fixed
Kahler metric g. A Higgs (vector) bundie over X is a pair (E,8)
consisting of a holomorphic vector bundle E on X and an End E-
valued holomorphic 1-form 6 on X such that 6 satisfies the in-
tegrability condition [6,8] = 0. A Higgs bundle (E,0) is called
atable if we have p(%) < pn(E) for any @-invariant torsion free coher-
ent analytic subsheaf % of O(E). Here for any torsion free coherent
analytic sheaf @ on X, p(9) denotes the rational number u(9) =
deg @ / rank 4 where deg @ is the degree of @ with respect to the
Kahler class y of g (cf.(7.4.2) below).

Let (E,8) be a Higgs bundle. Let h be a hermitian metric on
E: and D the associated hermitian connection with the curvature form

h f
Fh' Using the metric h we form the conjugate 9* oi (%] whicﬁ is
an End E-valued (0,1)-form (cf.(7.1)). Set ¥ =60 + 0 . Then define
another (affine) connection D = D(E,8,h) on E by D = Dh + . We
quote a special case of a basic result of Simpson [S1][S2] on Higgs

bundles as a lemma.



(1.1.1) Lemma. Let (E,8) be a Higgs bundle of rank r with the
vanishing first and second chern classes. Then (E,08) is stable if
and only if there exists a hermitian metric h on E such that the
associated connection D is flat and irreducible. Moreover, in this

case such a metric is unique.

(1.2) The above objects are also related to harmonic metrics. In
general let V - X be a Cw vector bundle on X and D a connection
on V. Given a hermitian metric h on V we may decompose D
uniquely into: D = Dh + ¥, where Dh is a metric connection and ¥

is a C 1-form with values in self-adjoint endomorphisms of V with
respect to h. In this notation we call h harmonic (with respect to
D) if th = D:¢ = 0, where D: denotes the formal adjoint of Dh'
Note that the first condition is automatic if D is flat (cf.(7.1.1)).

The next result is due also to Simpson [S2]. (See (7.7.1) below.)

(1.2.1) Lemma. Let (E,8) be a Higgs bundle and h a hermitian
metric such that D = D(E,8,h) 1is flat. Then h is harmonic with
respect to D on V = E. Conversely, if V is a ¢” vector bundle
with a flat connection D, and a harmonic metric h with respect to
D, then the following hold true: 1) the curvature F of- D is of

h h

type (1,1) (so that the (0,1)-part Dg of Dh defines a holomorphic
structure on V), 2) (1,0)-part @ of ¢ is holomorphic with respect

to this holomorphic structure, and 3) 8 is integrable; [6,8] = 0.

We must also recall another basic result due to Corlette [C]:
(1.2.2) Lemma. Let V be a C. vector bundle and D a flat aéd ir-
reducible connection on V. Then there exists a unique harmonic met-

ric h with respect to D.

(1.3) We next consider the moduli space of the objects considered

above. Let n be the fundamental group X. Fix a positive integer



r and set G = GL(r,C). Then the following is well-known (cf. [JM]):

(1.3.1) Lemma. The set %N of equivalence classes of irreducible
representations of n into G has a natural structure of a quasi-

projective scheme, and hence of a complex analytic space.

Proof. Let R be the set of all the representations p: n =» G.
Then R has the natural structure of a complex affine algebraic scheme
such that the action of G on R by conjugations is algebraic. An
element p € R is irreducible if and only if the image of p 1is not
contained in any parabolic subgroup of G. Hence by [JM;Th.1] D18
irreducible if and only if the G-orbit of p is closed in R and
the identity component of the stabilizer of p coincides with the

center of G. A general result of geometric invariant theory [M;

Chap.1,82] yields the desired result.

On the other hand, it is not difficult to show the following:

(1.3.2) Proposition. The coarse moduli space of stable Higgs bun-

dles of a fixed rank r exists as a (Hausdorff) complex analytic space.

See Section 9 for the more detail. We are interested in those

connected components of the above moduli space corresponding to Higgs

bundles with c1 = c2 =0 Let M be the union of all such compo-

nents. From the preceeding three lemmas we get:

(1.3.3) Lemma. There is a natural bijection between the two ?oduli
4

spaces M and %.

However, the complex structure of R depends only on the underly-
ing topological space of X, while that of M depends on the complex

structure of X.



(1.4) The main purpose of this paper is to show that these two complex

structures ® and % (on the same set) appears as generic and special
members of a Calabi family of a certain hyperkahler space (as far as
the nonsingular points are concerned for the moment). Denote by ﬁ
the complex space which is complex conjugate to M, and by P the com-

plex projective line. Let no and !o be the set of nonsingular

points of the underlying reduced subspace of ® and R respectively.

(1.4.1) Theorem. The notations and assumptions being as above, there
i1
exists a hyperkahler manifold M with a special S action such that in

the associated Calabi family {Yt}teP the fiber Y0 (resp. Y ) over

(resp. «») is isomorphic to no (resp. ﬁo) and the other members Yt

are all isomorphic to Ro.

The result is due to Hitchin (cf.[H1;885,6,9]) in case dim X = 1.

For the definitions of the terminologies used above see (2.2)-(2.4)

below.

(1.5) The proof proceeds roughly as follows. Let V - X be a fixed
(o8 complex vector bundle of rank, say r. Fix an integer k = dim X
* 2. Let 4 = 4 be the space of connections on V which are of

k

.Sobolev class Hk. ] is a complex affine space with traslation group

15
Ak = A;(X,End E) of End E-valued l1-forms of class Hk. The group @ =

9k+1 of complex gauge transformations of V (or of the associated

principal bundle) of class Hk+1 acts on 4« by complex affine trans-
formations. A connection D of d with curvature F 1is said to be

Einstein, if
L) TR ead, A=/ 2%n u(E)/Ixmn :

where ® is the Kahler form associated to the given Kahler metric g
and A is the trace operator with respect to g (cf.[W;p.21]). Then
we consider the subset & = & of 4 consisting of irreducible Ein-

k
stein connections D of class Hk which admits a weakly harmonic metric,



where we call a metric h on V weakly harmonic if D;w =0 An - the
previous notation. The action of @ on preserves & and we
form the quotients € = &§/9. The main point then is to prove the
following:

(1.5.2) Theorem. & has a natural structure of a Kahler symplectic
Hilbert manifold. Moreover, there exists a hyperkahler Hilbert mani-

1
fold § with a special S action such that in the associated Calabi

tep’ 3j is naturally identified with & as a Kahler

symplectic manifold.

family {St}

Here, a Kahler symplectic manifold is a Kahler manifold with a
fixed nondegenerate holomorphic 2-form which is parallel with respect
to the Levi-Civita connection. § is obtained as a hyperkahler quo-
tient associated to a certain hyperkahler moment map in the sense of
[HKLR]. (The proof will be given at the end of Section 6.) When
dim X = 1, § is of finite dimension and already gives the hyperkahler
manifold of Theorem (1.4.1) (cf. Hithcin [H1]). In higher dimensional
case it is necessarily of infinite dimension and we check that NO is

naturally a hyperkahler submanifold of § above.

§2. Hyperkidhler Moment Map

(2.1) Let H be the algebra of real quaternions with R-basis denoted

/

by 1, i, j, k as usual. Set H
¢ = {are Hy g = -1},

* % *
Then we have a natural identification C = H /C = P, where H := H - 0
*
acts on C by inner automorphisms, C is identified with the stabi-

*
lizer Hi of i, and P denotes the complex projective line. Let



Sp(1) be the group of unit quaternions and s = sp(l) 1its Lie algebra,
identified with the oriented space of pure quaternions, where i, j and
k form an oriented basis. For any element q € C ¢ s take an ele-
ment r and s of C such that q, r and s form an oriented ortho-
normal basis of s. (Denote by Aq the set of pairs (r,s) of such

elements in s.) Then the complex line
2 := C(r + J=1s)
q

in the complexification sc is independent of the choices of (r,s) €

Aq and L:= v ¢ becomes a holomorphic line bundle of degree -2 on
q€eC
C = P as can be checked easily (cf. e.g.[F3;p.111,Lemma 1.3]). It

we identify sC ~ s1(2,C) with its dual by using the Killing form,
any element of 5C defines a linear form on each fiber Qq of L
depending holomorphically on gq; in this way we may identify sC fur-

*
ther with the space TI'(C,L ) of holomorphic sections of the dual bun-

*
dle L .

(2.2) We recall the notions of a hyperkahler manifold and the associ-
ated Calabi family (cf.[HKLR][F3;p.125]). A hyperkahier manifold is
a Riemannian manifold (M,g) endowed with almost complex structures

T and J such that IJ = =J1 'and that (M,I:g) 'and’ (M,J:g) are

Kahler manifolds. In this case we denote the hyperkahler manifold by
a quadruple M = (M,g;I,J). Each element

2 2 2
(2.2.1) q = ai by +tckieCy a +b + ci=1,

defines an almost complex structure Jq = al + bJ + ¢clIJ on M; which

induces a family of Kahler structures (Mq,g) parametrized by C =

P, where Mq = (M,Jq) is the underlying complex manifold. The corres-
ponding Kahler form wq on Mq is then given by ¢

mq(x,y) g(qu.y)-

Furthermore, for any wu:= e(r+/:Ts) € Qq with a unique (r,s) € Aq

and a unique positive number e,

@, e(wr + /-lws)



is a holomorphic symplectic 2-form on M
Moreover, the complex manifolds Mq fit well into a holomorphic
family in the following sense: There is a unique complex structure ¢

on M x C which restricts to Jq on M =Mxgq and to the standard

(M x C, #) be the

complex structure on each x x C = P. Let Z
resulting complex manifold. By construction a) the natural projec-
tion f: Z - C is holomorphic with fiber over q identical to Mq,
and b) x x C is a complex submanifold of Z for any x € M. We

call this holomorphic family

{(Mq,g)}qec or £ -7 '%:C

of Kahler manifolds the Calabi family associated to the hyperkadhler

manifold M. We also note that the association u(e€ nq) - ¢u allows
%

us to identify the line bundle f L as a subbundle of the bundle

2 %
A TZ of relative holomorphic 2-froms on Z over C.

/C

The notions of a hyperkahler manifold and a Calabi family as well
as all those introduced in what follows can naturally be extended to
the category of V-manifolds. We leave it to the reader to take care

of the relevant details though we shall use freely the corresponding

terminology for V-manifolds.

(2.3) We write i =0 and -i =« on C = P, and accordingly, Mo =
*

1 *
Mi and M“ = M—t' The circle group S = Ht n:8Spll)ictH acts nat-

urally on C, and its complexification C* in SL(2,C) with respect
to the inclusion Sp(l1) ¢ SL(2,C) acts transitively on U:= C - {0,=}.
Then a hyperkahler manifold M as above is said to admit a special Sl—
action if there exists a c” Sl—action on the Riemannian manifold (M,g)
with the following properties: 1) the above C*-action on C 1lift§ to a
holomorphic C*-action on Z via f such that it induces the product
Sl—action on Z =M x C, and 2) for any dq € Cy t € S1 induces a
Kahler isometry (Mq,g) - (Mt(q),g). We speak also of a special C*—
action on Z in this case. Note that in this case all the (Mq,g),

q € U, are isomorphic as Kahler manifolds; hence M cannot be compact;

otherwise by Prop. 13 of "A. Fujiki, Publ. RIMS, Kyoto Univ., 20 (1984)"
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M would all be isomorphic, which is absurd as is well-known.

We get a holomorphic involution on Z induced by i € Sl; in
particular it induces an anti-holomorphic involution od on Mj
(since i sends J into -j on C and Jj = —J_j), and a holomor-
phic involution 00 on MO. The respective fixed point sets Fo and
F on Mo and Mj are of course identical with respect to the natural

identification Mo = Mj = M. However, F0 is a complex submanifold
of Mo, while F is a ’'real part’ of Mj in a neighborhood of F.

(2.4) Let M = (M,g;I,J) be a hyperkahler manifold as above. Let
dim M = 4n. Then the structure group of the tangent bundle of M is
naturally reduced to the unitary symplectic group Sp(n), and hence the
tangent bundle admits a natural quaternion inner product < , > whose
real part is precisely the given Riemannian metric g. The s-part
e >S of < , > with respect to the decomposition H = R + s is an
s-valued 2-form on M, which we shall denote by o = o and call the

HK
hyperkdahler form on M. We may write o = i X 0o, + § X 0o, + kK X 0, .

Let G be a connected complex linear reduct:ve Lie gioup actiﬁg
holomorphically on the complex manifold (M,J) and K a maximal com-
pact subgroup of G whose induced action on M preserves the hyper-
kahler structure, i.e. preserves also I and ¢g. We then recall the
notion of the hyperkahler moment map associated to the action of K on
M as described in [HKLR].

We fix an (ad G)-invariant nondegenerate symmetric bilinear form
) on g which restricts to a (positive definite) inner product

(=, )l on [, and then using this we shall identify g and [ with

their duals respectively. Here we also assume that the semisimple
part g’ and the center 3 are orthogonal in g with respect t?
sen )s. Now a hyperkdhler moment map associated to the action of K

on M is a K-equivariant map u: M =» s le such that for any a € I,

and any smooth vector field u on M we have

(du(u),a)[ = w(a,u)



11

as an element of s, where a is the vector field on M defined by
a. Then, since dp is uniquely determined by the above condition,
p is unique up to the additions of constant maps M - s @Rsl, where

3, is the center of 1.

(2.5) For any q = ai + bj + ck € C, by evaluating u(x) € s aRl ~
s*Sh! on q € s, we get a K-equivariant map uq: M - { which is a
moment map for the induced action of K on the Kahler manifold (Mq,g);
namely, for any element a € | and any smooth vector field u on M

we have (duq(u),a) = mq(g,u) as a function on M. Then we may write

(2.5.1) u=i®u£+3®uj+k®uk.

Conversely, given moment maps “q’ g =4, Jy-k; for the action of . K
on the Kahler manifolds Mq the last expression defines a hyperkéahler
moment map.

Suppose now that we are given holomorphic and c” moment maps

vj: M- g and uj: M=-1
associated respectively to the holomorphic action of G on the holo-
morphic symplectic manifold (Mj,dj) (cf.(2.6.1) below) and to the o=

action of K on the Kahler manifold (M,wj), where we define

01 s TP =0, + /_lwi
(el (2:2)). Write
= + s
Mp = v 1“1:
with respect to the canonical decomposition g =1 @ J-11. Then B

and uiw>themselves are moment maps for the corresponding Kahler ac-
tions of K, and therefore we have a hyperkdahler moment map wu: M -

s Ghl by the formula (2.5.1).

H
(2.6) If we let K act on (C trivially, then.in the induced K-action

on Z = M x C each element acts biholomorphically on Z by the pro-

perty b) of the manifold 2Z. Suppose further that this action of K



12

on Z extends to a holomorphic action of G (again inducing the iden-

gity-on - C). On each fiber Mq the extended action necessarily pre-
serves the holomorphic symplectic form Ou for any u = e(r+/:Ts) € 2
and coincides with the original one for q = j. Consider u as a Cw

*
section of the trivial bundle E - M with fiber ngcg ==RC oL ecg)

with respect to the natural inclusion s Ghl e sqs a (cf.(2.1)). Let

C

n: Z - M be the natural projection, and v the c¢” section over Z of
X % *

f L ®.g defined to be the image of n pu with respect to the natural

C
homomorphism

* * % *
vin E- fL@®s = Hom(f L,g);
explicitly, for any u € nq as above
vq(z,u) = e(ur(x)+ J=1 us(x)) € a5

where v = v| and z = (x,q9), X € M, q € C as follows readily from

R
q

the definitions.

(2.6.1) Lemma. For fixed q € C and u € ﬂq, ) {x):= vq(x,u):

u
M - g is a holomorphic moment map for the holomor:;ic symplectic
manifold (Mq,wu); namely, it is G-equivariant and satisfies the
equality (dvq’u(v),a)g = ¢(a,v) for any element a € g and any vec-
tor field v on M, where a = gq denotes the holomorphic vector

field on Mq defined by a.

Proof. We have
(dv, ,(v),8) = e{(du_(v),a) + J:T(dus(V),a)}

= efo_(a,v) + J:Tms(g.V)} = o (a,v).

‘

This shows that v = is holomorphic on Mq and satisfies the second
’
condition for a moment map. The the equivariancy follows by the usual
argument as follows: For a fixed x € M consider a holomorphic map «:
G - o = glv X))~y {gx). Then o vanishes on K and
8y alg) = gy (x))- v (8x)

hence on its complexfication G.



