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FOREWORD TO THE AMERICAN EDITION

This edition includes Chapter V, “Interpolation in spaces of smooth func-
tions”, written at the same time as the preceding chapters but not included in
the Soviet edition for technical reasons. This chapter expounds the abstract
scheme for constructing interpolation spaces by means of an unbounded
operator in a Banach space, and the corresponding approximation process.
Starting points of this theory were papers by J. L. Lions, Lions and J. Peetre,
and P. Grisvard, which then were extended by other authors. As an applica-
tion we consider only Sobolev and Besov spaces.

The reader can get acquainted with other families of spaces in the books
referred to in the foreword to the Soviet edition.

The authors express their sincere gratitude to the editor of the translation,
Dr. L. J. Leifman, for his penetrating remarks that helped in eliminating a
number of shortcomings.

vii



FOREWORD

The present book is devoted to the systematic exposition of a chapter in
functional analysis that has appeared and developed in the past two decades
and has found applications in various fields.

The basic objects of classical functional analysis were operators acting
from one Banach space (or later from a topological linear space) into another.
The spaces themselves were considered as given in advance. The change of
this ideology was facilitated to a significant extent by the imbedding theorems
of S. L. Sobolev, in which a number of fundamental theorems and inequali-
ties of analysis were interpreted as assertions concerning the imbedding of
one Banach space into another. Imbedding theorems arose in connection with
problems of the theory of partial differential equations, in which for the study
of smoothness of solutions a series of spaces is introduced; for the study of
the behavior near the boundary of the domain or near some singular points
other types of spaces are introduced, the study of values of solutions on
manifolds of smaller dimension is performed in still other spaces, etc. The
abundance of various spaces required a detailed study of the interrelations
between these spaces. Thus a new level of abstraction appeared, on which the
Banach spaces themselves are considered as elements of some category. The
interpolation theory for linear operators expounded in the book is to a great
extent connected with such an approach.

The first interpolation theorem in operator theory was obtained by M.
Riesz in 1926 in the form of an inequality for bilinear forms. A sharpening
and operator formulation of it were given by G. O. Thorin. An essential
further step was the interpolation theorem of J. Marcinkiewicz (1939), whose
proof was published by A. Zygmund in 1956. In the fifties important
generalizations of the Riesz-Thorin and Marcinkiewicz theorems were ob-
tained by E. M. Stein and G. Weiss. However, all these and other communi-
cations were concerned with L, spaces or spaces similar to them. The
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X FOREWORD

development of general interpolation theorems for families of abstract Hilbert
and Banach spaces began in 1958 independently in several countries. The first
publications are due to J. L. Lions (1958-1960), E. Gagliardo (1959-1960), A.
P. Calderon (1960), and S. G. Krein (1960). The work of J. A. Peetre played
an essential role in the sequel. Several methods have been created for
obtaining interpolation theorems, which have deep interrelations. Moreover,
it became clear fairly soon that the interpolation properties of spaces inter-
mediate between two Banach spaces are consequences of the functoriality of
the methods of construction. Therefore, the main emphasis has been shifted
to the study of properties of intermediate interpolation spaces obtained by
various methods, and to their realization. Along with this, in the work of W.
Orlicz, A. P. Calderén, G. G. Lorentz, E. M. Semenov, and others deep
results have been obtained concerning the interpolation of linear operators in
spaces of measurable functions.

It is impossible to expound all results of interpolation theory for linear
operators in one book. We have tried to illuminate only some of the main
directions in its development: the real and complex methods of constructing
interpolation spaces, the method of scales of Banach spaces, and interpola-
tion in spaces of measurable functions. Supplementary information is con-
tained in remarks and references.

In the development of interpolation theory for operators many new general
notions of functional analysis have emerged. These notions and their interre-
lations are studied in the first chapter of the book. The exposition is based
essentially on the work of N. Aronszajn and E. Gagliardo. To read this
chapter one needs to know only the basic principles of functional analysis.

The second chapter, devoted to interpolation in spaces of measurable
functions, makes up a significant portion of the book. It can be read
independently of the first chapter, from which only the simplest definitions
are needed. The chapter contains a theorem describing all interpolation
spaces between L, and L, and a theorem which is a further extension of the
Marcinkiewicz theorem. The exposition is pursued as far as concrete applica-
tions, for example, the theory of orthogonal series: convergence properties of
Fourier series and the basis property of a function system are studied.
Moreover, the chapter contains much auxiliary material from the theory of
functions which is discussed little in the literature. Decreasing rearrangements
of measurable functions are studied in detail, function spaces symmetric in
the sense of E. M. Semenov, and in particular, Lorentz and Marcinkiewicz
spaces, are discussed (in the foreign literature similar spaces are called
invariant with respect to permutations). Sharpenings of classical inequalities
of analysis (the Hardy-Littlewood, Hilbert, and other inequaities) are given.
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In the third chapter the theory of scales of Banach spaces, developed
mainly in the publications of S. G. Krein and Ju. I. Petunin, is expounded.
The prerequisite material for this is contained in the first chapter. Important
properties of the scales, in particular their “almost™ interpolation properties
are also expounded in the fourth chapter. In the last section of the third
chapter properties of the classical scale of Holder spaces important in
applications are studied in detail.

In the fourth chapter two methods of constructing interpolation spaces
enjoying the largest number of applications are described in detail: the
method of complex interpolation proposed independently by A. P. Calderon
and J. L. Lions and extensively developed by Calder6n, and the method of
constants and averages due to J. L. Lions and J. Peetre. The latter method is
expounded in the more general form which it acquired in the work of V. L.
Dmitriev (who took the most active part in writing the corresponding
section). The fourth chapter can be read independently from the second and
third chapters.

The book does not include interpolation theory in spaces of smooth
functions and its applications.* This theory developed under the influence of
the work on imbedding theorems by S. L. Sobolev, S. M. Nikol'skii and their
students and followers. The abstract theory did not rise immediately and
easily to the level of concrete imbedding theorems obtained by special means.
However, now such a theory has been created. Its exposition apparently
needs another book. One can get acquainted with it partly in the book [7] by
P. L. Butzer and H. Berens. It is expounded more completely in Hans
Triebel’s very recent book Interpolation theory, function spaces, differential
operators (published by VEB Deutscher Verlag Wiss., Berlin, 1977, and by
North-Holland, 1978).(") One can get acquainted with the applications of this
theory to the study of boundary value problems for partial differential
equations in the book of J. L. Lions and E. Magenes [27] and in Triebel’s
book mentioned above. At the end of the book there is a bibliography
covering, in addition, the indicated part of interpolation theory.

As we noted above, some parts of the book were written by V. 1. Dmitriev.
I. Ja. §neiberg provided us with invaluable help. He participated in writing §1
of Chapter IV and read a significant portion of the book. His critical remarks

* Editor’s note. For this translation a new Chapter V was added by the authors to cover this
subject.

(")The authors are grateful to Professor Triebel for making the manuscript of this book
available.
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enabled us to remove a number of inaccuracies and improve some proofs.
The authors express their gratitude to both of them.

Finally, we thank all participants of the Voronezh seminar on interpolation
theory for linear operators, and, in particular, M. S. Braverman, A. A.
Dmitriev, E. A. Pavlov, P. A. Ku¢ment, and A. A. Sedaev, for their constant
help in the preparation of the book.

The authors
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CHAPTER 1

IMBEDDED, INTERMEDIATE,
AND INTERPOLATION BANACH SPACES

§1. Imbedding of Banach spaces

1. Imbedded Banach spaces.

DEerINITION 1.1. We shall say that a Banach space E, is imbedded in a
Banach space E, if the following conditions are satisfied:

1°. x € E, implies that x € E|,

2°. The space E, induces a vector space structure on E; coinciding with the
structure of E|.

3°. There exists a constant Cy, such that

1l g, < Coullxllg, (L.1)

forall x € E,.

The smallest possible value of the constant C, in (1.1) is called the
imbedding constant of E, in E,,.

Sometimes the term “imbedding” is used in a wider sense. Instead of
conditions 1° and 2°, it is required that there exist an injective linear mapping
J (the imbedding operator) mapping E, into E,, and then condition (1.1) is
written in the form || jx|| g, < Coyllx|| g,-

In such a situation we shall always identify E, with its image jE.

Condition 3° can be formulated in the following equivalent form: if x, — x
in E,, then x, —» x in E,. In this form the definition of imbedding can be
carried over to topological linear spaces, and then we say that E, is algebrai-
cally and topologically imbedded in E|,

DEFINITION 1.2. The space E, is densely imbedded in E, if conditions 1°-3°
hold, and also

4°. The set E, is dense in E|,
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The space E, is compactly imbedded in E, if conditions 1°-3° hold, and
also

5°. Every set bounded in the norm of E, is relatively compact in E,,.

In what follows we shall denote the imbedding of E, in E, by the symbol
E, C E,, assuming that the symbol C means not only set-theoretic inclusion,
but imbedding having the properties 2° and 3°.

If the space E, is imbedded in E,, then on E, we can introduce a new
norm:

Ix1%, = Collxll g,

Then the space E} equipped with this norm is isomorphic with E;, and
Ixll, < %1%

In connection with this we introduce the following definition.

DEerINITION 1.3. We shall say that E, is normally imbedded in E, if E, is
dense in E, and the imbedding constant C, does not exceed one, i.e.
Ixl 5, < N1l g,

We consider some examples of normalized imbedding of Banach spaces.

Let E, = C(0, 1) be the space of continuous functions and E; = C™)(0, 1)
the space of continuously differentiable functions. Then C(0, 1) is normally
imbedded in C(0, 1), so that C(0, 1) ¢ C(0, 1) and

Ix]l co,1y = 1?[%?‘1]|x(1)' < Ix[l covgo,1y

= max 1) + (1)].
,'e“[o,u"‘()l ,glgfgllx()l

Besides, by the Weierstrass theorem the set M of algebraic polynomials is
dense in C(0, 1), and consequently C(0, 1) D M is also dense in C(0, 1).
Finally, by Arzela’s theorem, C(0, 1) is compactly imbedded in C(0, 1).

We may show analogously that the space C™(0, 1) of n times continuously
differentiable functions is normally and compactly imbedded in C™(0, 1) if
n>m.

Another example of normally imbedded spaces is furnished by the spaces
L.

PLet G be a bounded domain in n-space. Consider the space L, consisting of
the real-valued or complex-valued functions that are pth power summable in
G (1 < p < o0). We denote by L* the space L, with p = 2/(1 — a) in which
a norm is introduced by the formula

x|l = = (mes G)~V/||x]|,.
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The space L? is normally imbedded in L if 8 > a. Indeed, L* 5 L” for
a < B, and by the Holder inequality we have

(1—-a)/2
lI%|l = = (mes G)("_Wz(f |x(0)[/¢ = dt)
G

(a-s)/2
< (mes G)(“—l)/z(mes G)(B-a)/l(f |x(t)|2/(l—ﬁ) dt)
G

=|lxll.s  (x € LP).

The set of simple measurable functions (linear combinations of characteris-
tic functions) is dense in any space L% -1 < a < 1, and therefore L#? is
dense in L.

It is not difficult to verify that the imbedding of L# in L* does not have the
property of compactness.

It can be shown analogously that the sequence space /, is normally
imbedded in /, if p < gq.

The following circumstance should be kept in mind: the space E; can be
densely imbedded in the space E,, but the closure of the ball of E, in E, may
contain no interior points in the sense of the norm of E, Moreover, the
following assertion is well known:

LemMA 1.1. If a Banach space E, is imbedded in a Banach space E, and does
not coincide with it, then the closure in Ey of any ball of E,| is nowhere dense in
E,

PrOOF. We assume the contrary. Let the closure S? of the unit ball S, of E,
contain the ball 0,,(x,) with center at the point x, and radius 2r (in the sense
of the norm of E). Then the point (y — x,)/2 € SP, where y € a,,(x,), runs
over the ball o, with center at zero. Consequently, the closure of any ball
5P contains the ball o,,. Let z be any element of o,. There exists an x, € S,
such that |z — x,||g, <r/2. Hence there is an x, € S,,, such that
lz — x; — x,|| g, < r/4. Continuing this process, we construct a sequence of
elements x, € S, - such that

Iz = x =+ =g, < P27
Then z = Z{° x;, and this series converges in the norm of E,. Therefore
z € E,. We have arrived at a contradiction to the assumption that E,  E,,.
2. Relative completion. Let E, and E, be a couple of imbedded Banach

spaces (E, C E;). Denote by E,, the collection of all elements of E, which
are limits in E; of sequences of elements from E, bounded in the norm of E;:

x € Ep: x = lim_ x, (in Eg) and ||x,|lg <R. (1.2)
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Obviously Ey, is a linear manifold in E;,. We can introduce a norm in it by

putting

llxlloy = inf R,

where the infimum is taken over those R for which there exist sequences x,
with property (1.2). We verify that ||x||,; has the properties of a norm. For
this we note that (1.1) implies that ||x,|| g, < CollX,llg, < CyR, and since
X, —>x in E, we also have |x| g < CpR. This implies that ||x| g <
Co1llx|lo1» and, in particular, that ||x||,; = O only if x = 0. It is obvious that
[IAx(lo; = |A] [|x|lo;- Moreover, if the sequences {x,} and {y,} have properties
(1.2) relative to the elements x and y, respectively, with constants R and R,,
then x, + y, > x + y in Ey, and ||x, + y,|lg, <R + R,.

We obtain from this that ||x + y||o; < R + R,, and then, taking the in-
fimum on the right side, that ||x + y|lo; < [|X]los + [|¥]lo1-

We note that for x € E; we may choose x,, = x, and from the definition of
the norm in E,, it will follow that ||x|lo; < [|x]|£,-

The construction of E,, may be ascribed the following geometrical mean-
ing. Let x € E; and ||x||o; = r. By definition, the element x belongs to the
closure in E, of any ball of E, with radius R > r. Taking a sequence R, — r
and for every R,, choosing an appropriate sequence of elements in E, with
property (1.2), we can construct a sequence {x; } C E; such that x; — x in E|,
and ||xi|| g, — r as k — co. Then X, = rx,’((||x,’(||E|)_l — x in Eg, and || X || g, =
r. Thus, x belongs to the closure in E, of the ball (and even of the sphere) of
radius r of E, and does not belong to the closure of balls of smaller radius.

Hence, the ball of E|, is the closure in E; of the ball of E, with the same
radius.

We prove that the normed space E, is complete.

Let {x®} be a Cauchy sequence in E,. By the inequality |x| 5 <
Co1llx|los> it is Cauchy in E, Let x**  x in E,. For any &€ > 0 and suffi-
ciently large m and / we have || x™ — x®)||;, < e. This means that x™ — x®
belongs to the closure in E; of the ball of radius € of the space E,. However,
x™ — x® 5 x™ — x in E, as | — co. Therefore, the element x™ — x
belongs to the same closure, ie. || x™ — x||,, <& Thus, xX® > x in E,, as
k — o0, and E,; is complete.

Summing up, we may say that we have constructed a Banach space E|,
such that E, C E,, C E,; moreover, ||x|lo; < ||x]| g, (x € E,) and

lx]l g, < CorllXllor (x € Eyy). (1.3)
From (1.3) it follows that if £, is normally imbedded in E, so is Ey,.

The Banach space E, is called the relative completion of E, with respect to
E,
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The following facts are important.

LeEMMA 1.2. If E, does not coincide with E,, then its relative completion E
does not coincide with E, either.

PrOOF. By Lemma 1.1 the closure in E, of any ball S, of E, is nowhere
dense in E,,. Therefore E;, = U, S, is a set of the first category in E,, and
consequently does not coincide with E,.

LeMMA 1.3. The completion Eo: of E,, with respect to E, coincides with Eg,
itself.

PROOF. If y € E,,, then there is a sequence of elements y, € Eg, such that

l7llor = ll¥llz, and y, -y in E, For every y, there exists a sequence
x® -y, in E, as n— oo and such that [|x®| ¢ = ||yl g, = Iyl z, But

then we can construct a sequence x\* such that x — y in E;and || x%|| z, =
lll £, and consequently y € E,,. Moreover, from the above it follows that
l¥llor < ll¥llz,, and since the reverse inequality is always true (see (1.3)), we
have || y|lo; = |||l z,- The lemma is proved.

A simple example of relative completion can be obtained by setting
E,= L0, 1) and E, = C(0, 1). Then it is easy to see that Ey = L (0, 1).
Similarly, if E, = C(0, 1) and E, = C,(0, 1), then Ey = H,(0, 1) is the space
of functions satisfying a Lipschitz condition.

The following assertions concerning the relation between the spaces E, and
E, are consequences of the definition of relative completion.

LEMMA 1.4. In order that E, be isometrically imbedded in Ey, it is necessary
and sufficient that the ball of E, be closed (in E,) in the topology induced by the
norm of E,.

PrOOF. If |x|lo; < ||x||g, for some x € E,, then there exists a sequence
x, = x in E, such that ||x,| g, = ||x[lo = a. This means that the ball of
radius g in E; is not closed in the norm of E,. Its limit point x has norm
greater than a.

Conversely, if the ball of radius a is not closed, then there exists a point x
with || x|, > a and a sequence x, — x in E, such that ||x,|| g, < a. But then
Ixllor < @ < ||x]|g,

LEMMA 1.5. In order that E, be a closed subset of E, it is necessary and
sufficient that the closure of a ball of E, in the topology induced in E, by the
norm of E, be a bounded set in E,.
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By the Banach theorem, E, is closed in E, if and only if the norms ||x|| g,
and || x||o; are equivalent on E,. After this remark the proof of Lemma 1.5 can
be carried out similarly to that of Lemma 1.4.

DEeFINITION 1.4. The space E, is said to be complete with respect to E, if E,
coincides with E| isometrically.

By Lemma 1.3, E,, is complete with respect to E,. In particular, L (0, 1) is
complete with respect to L,(0, 1).

LEMMA 1.6. If E, C F C E,, then the completion E, of E, with respect to F
is imbedded in Eg, with imbedding constant not exceeding one. The completion
of Er., with respect to E, coincides with Ey, isometrically.

PROOF. If x € Eg,, then there exists a sequence x, € E; with ||x,|| g, =
[l x|l g,, such that x, — x in F. In view of the imbedding ' C E, we then have
X, — x in E,, and consequently x € E, and ||x|| g, < [|X[|g,,-

Moreover, the unit ball of the completion of E,; with respect to E; is the
closure in E, of the unit ball of E.; the unit ball of E, is dense in the latter
ball in the norm of F, and consequently in the norm of E; as well. Thus, the
unit ball of the completion of E, with respect to E, coincides with the
closure in E; of the unit ball of E,, i.e. with the unit ball of E,.

COROLLARY 1. If E,| is complete with respect to E,, then it is complete with
respect to F.

For example, L_(0, 1) is complete with respect to all spaces L,(0, 1),
1 <p< oo

COROLLARY 2. If Ep, is complete with respect to E, then the completion of
Ep, coincides with that of E,.

§2. Dual spaces of imbedded Banach spaces

1. Dual spaces and relative completion. 1f the space E, is imbedded in the
space E,, then the restriction to E, of every continuous linear functional f(x)
defined on E, induces a functional on E, in a natural manner. This functional
is continuous in the norm of E,. Indeed,

[f(x)| < ||f||150 lxll £, < Cm”f”s;, 1%l £,

Thus, a linear mapping of the space Ej into E| is obtained. If E, is not
dense in E,, then there exists a nonzero functional in E; which identically
vanishes on E,, and consequently is mapped into zero. In this case the
mapping is not injective. If, on the other hand, E, is dense in E,, then the
mapping is injective, and Ej can be considered imbedded in E|. Then, the
imbedding constant does not exceed Cy,.
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The quantity

sup WOy (reE

<ek, IIXllE,

will be a seminorm on Ej in the first case and a norm on Ej in the second
case.
Now we give another characterization of the relative completion E,.

LeMMA 2.1. The completion E,, of E, with respect to E, consists of all
elements of E, inducing functionals on Eg, bounded in the seminorm || f|| g
according to the formula x(f) = f(x).

Proor. If x € E,,, then there exists a sequence x, such that x, — x in E,
and [|x,llg, = [|Ixllo. Let f € E;. We have fx,)—f(x) and |f(x,)| <
£l g 1%all £, = ISl £; I Xllos- This implies that [f(x)| < || fllg llxllo also
holds. Thus, the functional x(f) is bounded on Ej in the seminorm || f|| g;,
and its norm does not exceed || x||q,.

Now let x € E; and |x(f)| = [(x)| < C||fllg (f € Eg). We show that x
belongs to the closure in E; of the ball S of radius C of E,. Otherwise there
would exist a functional f, € Eg such that sup, e | fo(¥)| < fo(x) or C|| foll g
< fo(x), which contradicts the initial assumption. Thus, x € E; and || x||o; <
C:

From the proof of the lemma we obtain the following corollary.

COROLLARY 1. The norm of the functional x(f) with respect to the seminorm
If1l ; is equal to || x]|o;:
Xl = sup  [A(x)]. (2.1)

SEEG|fllg <1

DEFINITION 2.1. A linear manifold M’ of continuous linear functionals on a
Banach space E is said to be normative if

Ixlle = suwp |Ax)] (x € E).
JEM | flp <1

Formula (2.1) and Lémma 1.4 imply the following theorem.

THEOREM 2.1. In order that the restrictions to E, of all functionals from E;
form a normative set for E, it is necessary and sufficient that E, be imbedded
isometrically in E,,, or, what is the same, a ball of E, be closed in E, in the
topology induced by the norm of E,,.

2. Dual spaces of densely imbedded spaces. If E, is densely imbedded in E,
then, as we have seen above, E{ is imbedded in E|; however, this imbedding
may not be dense. For example, /, = E, is normally imbedded in ¢, = E,,.
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The dual spaces E; = /, and E| = [ are not densely imbedded. Indeed, the
element (1, 1,...) € /_ is at distance one from the linear manifold /,.

We recall that a linear manifold M’ C E| is said to be total if the condition
f(xg) = 0(xq € E)) for all f € M’ implies that x, = 0.(") If E, is dense in E_,
then Ej is a total linear manifold in E|. Indeed, if x, € E, and x, # 0, then
Xo € E,, and so there is a functional f, € Eg such that fy(xg) = ||x,l| g, # 0.

If E, is reflexive, then every total manifold is dense in E|, and so in this
case Ej is densely imbedded in E|.

THEOREM 2.2. If E,| is densely imbedded in E, then E§ is complete with
respect to E|. '

Proor. If f belongs to the completion (Eg), of Ej with respect to E, then
there exists a sequence f, € Eg such that f, — f in E{ and || £,|| g; = || fll(gp),-
Then for any x € E; we have f,(x) - f(x). The sequence of the linear
functionals f, € E; is uniformly bounded and converges to f on the set E,
dense in E, By the Banach-Steinhaus theorem this implies that f € E{ and
the sequence f, weakly converges to f on E,. Moreover, || f|| g, <lim|| f,|| g, =
| fll(gs, Since in the case of a completion the reverse inequality always holds,

we have || fll g, = I|fllgp,-

THEOREM 2.3. A reflexive space E, is complete with respect to any other space
E, in which it is imbedded.

ProOF. Without loss of generality we may assume that E, is dense in E,,
since otherwise E, could be replaced by the closure of E, in E, without
changing the completion Ej,. Under this assumption, the reflexivity of E,
implies that Ej is densely imbedded in E{. Then by Theorem 2.2 the space
E[" = E, is complete with respect to Ej, and by Corollary 1 of Lemma 1.6
the space E, is complete with respect to E,. The theorem is proved.

If E; is densely imbedded in Ej, then it is a normative set on E,, and
therefore Lemma 2.1 and formula (2.1) imply the following assertion.

LEMMA 2.2. If E, is densely imbedded in E, and E is densely imbedded in E;,
then E| is isometrically imbedded in E,. The space Ey can be isometrically
imbedded in E{' in a natural manner, and in this natural identification we may
assume that E,; = EyN E.

Now if Ej is not densely imbedded in E{, we can consider its closure E] in
E|. This is a subspace of E|. In this case we may reformulate Lemma 2.1 and
Corollary 1 as follows.

(")8 is the origin of the space.



