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Preface

The main purpose of this monograph is to give a full description of Jorgensen’s
theory on the space QF of quasifuchsian (once) punctured torus groups with
a complete proof. Our method is based on Poincare’s theorem on fundamental
polyhedra. This geometric approach enabled us to extend Jorgensen’s theory
beyond the quasifuchsian space and apply to knot theory.

1. History

By the late 70’s Troels Jorgensen had made a series of detailed studies on
the space QF of quasifuchsian (once) punctured torus groups from the view
point of their Ford fundamental domains. These studies are summarized in
his famous unfinished paper [40]. In it, he gave a complete description of the
combinatorial structure of the Ford domain of every quasifuchsian punctured
torus group, and showed that the space QF can be described in terms of the
combinatorics of the faces of the Ford domain. This led to the description
of QF in terms of the Farey triangulation, or the modular diagram. As a
byproduct, the first examples of surface bundles over the circle with complete
hyperbolic structures were obtained (cf. [41] and [43]).

To date, most of Jorgensen’s work has not been published, yet it became
widely known, motivated various research projects, and was successfully
applied. His work, together with Riley’s construction [67] of the complete
hyperbolic structure on the figure-eight knot complement, has motivated
Thurston’s uniformization theorem of surface bundles over the circle [77]
(cf. [63]). It had also motivated the experimental study by Mumford, McMullen
and Wright [60] of the limit sets of quasifuchsian punctured torus groups. This
work was sublimated into the beautiful book [61] by Mumford, Series and
Wright, which displays deeply hidden fractal shapes of the space QF and the
limit sets of punctured torus Kleinian groups.



VI Preface
2. Motivation

The authors’ interest in Jorgensen's work grew from knot theory. We are
interested in hyperbolic knots, and more generally hyperbolic links, i.e.,
mutually disjoint circles embedded in the 3-sphere S® whose complements
admit complete hyperbolic structures of finite volume. Recall that the Ford
domain of a complete cusped hyperbolic manifold of finite volume is the geo-
metric dual to the canonical ideal polyhedral decomposition introduced by
Epstein and Penner [27] (cf. [81]). Thus, by virtue of Mostow rigidity, the
combinatorial structure of the Ford domain is a complete invariant of the
topological type of such a manifold. In particular, by the knot complementary
theorem due to Gordon and Luecke [32], this gives a complete invariant of a
hyperbolic knot. In the joint work [71] with Weeks, the second author gave
certain topological decompositions of 2-bridge link complements into topo-
logical ideal tetrahedra, by imitating Jorgensen's decomposition of punctured
torus bundles over the circle (cf. [29]), and conjectured that they are combi-
natorially equivalent to the canonical decompositions. Here, a 2-bridge link
is a link which can be drawn with only two local maxima and minima in the
vertical direction (see Fig. 0.1). We had thought that if we could understand
Jorgensen’s work. then we would be able to prove the conjecture.

3. Extending of Jorgensen’s theory beyond
the quasifuchsian space and application to 2-bridge links

Fortunately, this turned out to be the case. Namely, we found a very natural
way to understand the hyperbolic structures and the canonical decomposi-
tions of the 2-bridge link complements in the context of Jorgensen's work.
To describe the idea, recall that the 2-bridge links are parametrized by pairs
(p,q) of relatively prime integers (see [22, Chap. 12]) and that the comple-
ment of the 2-bridge link of type (p, ¢) is homeomorphic to (the interior of)
the manifold obtained from S x [—1, 1], with S a 4-times punctured sphere, by
attaching 2-handles along o x (—1) and 3 x 1. where a and /3 are simple loops
on S of slopes 1/0 and q/p, respectively (see Sect. 2.1, p. 16, for the definition
of a slope); in particular, the link group (i.c., the fundamental group of the
complement of the link) is isomorphic to the quotient group m(S)/{{(«, 3)).
where ((-)) denotes the normal closure. The extended Jorgensen’s theory real-
izes the operation of attaching 2-handles by a continuous family of hyperbolic
cone-manifolds, whose cone axes are the union of the upper and lower tunnels,
i.e., the co-cores of the 2-handles (see Fig. 0.1).

According to Keen-Series’ theory of pleating varieties [44, 45, 46, 47, 49],
QF is foliated by the pleating varieties. P(A~.AT). where (A~. A ") runs over
(ordered) pairs of distinct projective measured laminations of the punctured
torus 7. By extending Jorgensen’s theory beyond the quasifuchsian space (cf.
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0< 6t <2n
6" =2x

Fig. 0.1. Continuous family of hyperbolic cone-manifolds M (8~,6™)
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Fig. 0.2a. Riley's pioneering exploration of groups generated by two parabolic
transformations. This computer-drawn picture has been circulated among the
experts and has inspired many researchers in the fields of Kleinian groups and knot
theory. This specific copy of the picture was obtained directly from Prof. Riley by
the third author when he visited SUNY Binghamton in February 1991.

Fig. 0.2b. Riley slice of Schottky space together with pleating rays and their

extensions
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[66]), we found that if (A=, A\T) is rational, i.e., each of A* are rational, then
the following hold:

1. The pleating variety P(A~, A") has a natural extension to the outside of
QF in the space of type-preserving representations of the fundamental
group 71 (7).

2. Each point in the extension is the holonomy representation of a certain
hyperbolic cone manifold, which is commensurable with the hyperbolic
cone manifold, M (6~,67), whose underlying space is the complement of
a 2-bridge link and whose singular set is the union of the upper and lower
tunnels, which have the cone angles #* and 6, respectively. Moreover the
2-bridge link is of type (p,q), or of slope ¢/p, if (A7, A1) is equivalent to
(1/0,q/p) by a modular transformation.

3. If the (edge path) distance d(1/0,q/p) in the Farey triangulation is > 3,
namely if ¢ Z £1 (mod p), then the hyperbolic cone manifold M (6~,67")
exists for every pair of cone angles in [0, 27]. Thus we have a continuous
family of hyperbolic cone manifolds connecting M(0,0), the quotient
hyperbolic manifold of a doubly cusped group, with M (27,27), the
complete hyperbolic structure of the 2-bridge link complement.

4. If 1 < d(1/0,q/p) < 2, namely if ¢ = £1 (mod p) and p # 0, then the

hyperbolic cone manifold M (60~ ,01) exists for every pair of cone angles in

[0, 2], except the pair (27, 27). In addition, if p > 3, M(6~,07) collapses

to the base orbifold of the Seifert fibered structure of the link complement

as both cone angles approach 2.

The holonomy group of M(6~,6%) is discrete if and only if 6F €

{2n/n|n € N} U {0}. In particular, that of M (27, 27/n) is generated

by two parabolic transformations, which Riley called a Heckoid group in

[68].

t

Actually, we have constructed these hyperbolic cone manifolds by explicitly
constructing “Ford fundamental polyhedra”. In other words, we have extended
Jorgensen’s description of the Ford fundamental polyhedra for quasifuchsian
punctured torus groups to those of the hyperbolic cone manifolds arising from
the 2-bridge links. In particular, we have shown that the canonical decompo-
sitions of hyperbolic 2-bridge link complements are isotopic to the topological
ideal tetrahedral decompositions constructed in [71], proving the conjecture
which motivated our project.

The above result also enables us to locate the 2-bridge link groups in the
representation space (Fig. 0.2b). The shaded region of the figure illustrates
(the first quadrant of) the Riley slice of the Schottky space, i.e., the subspace
of C consisting of those complex numbers w such that the group

o =((o1)-(29))

is discrete and free and such that the quotient £2(G,,)/G., of the domain of
discontinuity is homeomorphic to the 4-times punctured sphere S (Definition
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5.3.5). Each shaded region represents groups whose Ford domains have the
same combinatorics. The lines in the shaded region are pleating rays of
the Riley slice ([45]) and their extensions to the outside of the Riley slice
correspond to the hyperbolic cone-manifolds M (27, 6). In particular the end-
points with positive imaginary parts represent hyperbolic 2-bridge link groups
and those on the real line represent the orbifold fundamental groups of the
base orbifolds of the Seifert fibered structures of non-hyperbolic 2-bridge link
complements.

We think this realizes what Riley had in mind, for he devoted time and
effort to identify 2-bridge link groups in the space of non-elementary two
parabolic groups, yielding the mysterious output in Fig. 0.2a ([69]).

This describes a relation between the hyperbolic structure and the bridge
structure of a 2-bridge link complement. Since a bridge structure is a kind
of Heegaard structure, it is naturally expected that a similar relation holds
between the hyperbolic structures and the Heegaard structures of hyperbolic
manifolds. In particular, we conjecture that this is the case for tunnel number
1 hyperbolic knots and their unknotting tunnels. An wunknotting tunnel for
a knot K is an arc 7 in S% with 7 N1 K = 07 such that the complement
of an open regular neighborhood is homeomorphic to a genus 2 handlebody.
A knot which admits an unknotting tunnel is said to have tunnel number 1.
For example, a 2-bridge knot has tunnel number 1 and each of the upper
and lower tunnels is an unknotting tunnel. Tunnel number 1 knots have been
extensively studied, and in particular, non-hyperbolic tunnel number 1 knots
were classified by [59]. An unknotting tunnel 7 of a tunnel number 1 knot K
gives a Heegaard structure of the knot complement S* — K, in the sense that
S§3 — K is homeomorphic to (the interior) of the manifold obtained from the
genus 2 handlebody by adding a 2-handle, where 7 corresponds to the co-core
of the 2-handle. We would like to propose the following conjecture.

Conjecture. Let K be a tunnel number 1 hyperbolic knot and let 7 be an
unknotting tunnel for K. Then there is a continuous family of hyperbolic
cone manifolds whose underlying space is the knot complement and whose
cone axis is the unknotting tunnel 7, where the cone angle varies from 0 to

27. In particular, 7 is isotopic to a geodesic in the hyperbolic manifold S* — K.

4. Related results

Some of these results were announced in [8, 9, 10], and our original plan was
to write a single paper or a book which contains the whole story. However, we
found it very difficult to explain the whole theory at once, and thus decided
to divide it into a few papers. This monograph is the first part of the series,
and its main purpose is to give a full description of Jorgensen’s theory on the
space QF with a complete proof.

For Jorgensen’s theory on the space QF, supervised by Dunfield and par-
tially influenced by [9] and [78], Schedler [72] gave a treatment based on the
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theory of holomorphic motions. Though the bijectivity of the side parameter
map is not proved in his paper, his approach using holomorphic motions is
natural and further development is expected in the future.

Our approach in turn is based on Poincare’s theorem on fundamental
polyhedra. This geometric approach enables us to extend Jorgensen'’s theory
beyond the quasifuchsian space, where we need to treat indiscrete groups.

For (attempts of) expositions of Jorgensen’s theory without proof. see
(75, 8,9, 65, 70].

The first author has extended Jorgensen's theory to the closure of QF
in [2]. In particular, a rigorous proof was given to the well-known descrip-
tion of the Ford domain of the punctured torus bundles over the circle
(cf. [12, 64]). We note that Lackenby [52] gave a topological proof to the fact
that Jorgensen's ideal triangulations of punctured torus bundles are genuine
geometric decompositions. Gueritaud [33] also gave an alternative proof to
this fact by using the angle structure. In the appendix of the paper. Futer
proves by modifying Gueritaud’s argument that the topological ideal triangu-
lations of the 2-bridge link complements in [71] are also geometric. Moreover.
Gueritaud [34] also proved that these geometric decompositions are canonical.

In 3], the first author has found a nice relation between Jorgensen's para-
meter of QF and the conformal end invariant of elements of QF. This together
with Brock’s results [21] leads to an estimate of the convex core volume in
terms of Jorgensen’s parameter. He has also found interesting applications of
Jorgensen’s theory to knot theory in [4].

The computer program, OPTi [78] (cf. [79]), has been developed by the
third author for the project, and it has been a driving force for our work. It
is our pleasure that it has now become a favorite tool for various colleagues
in the world.

Collaborating with Komori and Sugawa, the third and last authors
launched a project to draw Bers’ slices of QF, and various mysterious pictures
have been produced ([50] and [82]).

5. A quick trip through Jorgensen’s theory
and its generalization

Jorgensen's theory enables us to intuitively understand how a simple fuchsian
group evolves into complicated quasifuchsian punctured torus groups and
boundary groups. by looking at their Ford domains (see Figs. 0.3-0.10, 0.17.
0.19-0.21 and 1.2). Jorgensen expresses this phenomenon as follows. The Ford
domain records the history of how the quasifuchsian group evolved from a
stmple fuchsian group.
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Fig. 0.4. (0.421397 — 0.0483593i, 0.295605 — 0.0422088i, 0.282998 + 0.09056811)

N v
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Fig. 0.5. (0.433791 — 0.0551654i, 0.290295 — 0.04814961, 0.275914 + 0.1033151)

5.1. A fuchsian punctured torus group

The starting point of Jorgensen’s theory is the fuchsian group illustrated in
Fig. 0.11. For each integer j, let L; be the geodesic in the upper half plane
model H? of the hyperbolic plane, represented by the Euclidean half circle with
center j/3 and radius 1/3. Let P; be the order 2 elliptic transformation whose
fixed point is equal to the highest point (j +1i)/3 of L; where i = /—1. Then
P; interchanges the inside and outside of L; and acts on L; as a Euclidean
isometry. The product Pj2P; 1P} is equal to the parabolic transformation
K(z) = z+ 1. Note that Pj,3, = K"P;K™" for every j, n € Z. Let I" be
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P, Py Py
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Fig. 0.8. (0.549741 — 0.118838i,0.240619 — 0.103725i, 0.20964 + 0.222563i)

the group generated by {P; |j € Z}. Then it is generated by three successive
elements, say Py, P, and P». Consider the shaded region R in Fig. 0.11. Then
the edges of R are paired by Py, P;. P> and K. By applying Poincare’s theorem
on fundamental polyhedra to this setting, we see that R is a fundamental
domain of the group I" and

I'=(Py,P,,P, | P} =P} =P} =1)=(Z/2Z) x (Z/2Z) * (Z/2Z).
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Fig. 0.10. (0.652971 — 0.175526i, 0.196392 — 0.153203i, 0.150637 + 0.328729i)

As shown in Fig. 0.12, the quotient H?/I" is a hyperbolic orbifold, O, with
underlying space once-punctured sphere and with three cone points of cone
angle m. The subgroup Iy of I' of index 2, obtained as the kernel of the
homomorphism I" — Z/27Z sending each generator P; to the generator of
Z/2Z, is a rank 2 free group generated by A := KFPy = PP, and B :=
K~='P, = PyP,. The union RU K (R) is a fundamental domain of I, and the
quotient H? /I is homeomorphic to the once-punctured torus, 7', where the
puncture corresponds to the commutator [A, B] = K?2. Thus I} is a fuchsian
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Fig. 0.11. Fuchsian group I' = (P, P1, P2) and its fundamental region R
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Fig. 0.12. By applying the edge pairings Py, P1 and P> to the fundamental region R,
we obtained the surface on the left hand side. By further applying the edge pairing
K to this surface, we obtain the orbifold O with underlying space once-punctured
sphere and with three cone points of cone angle 7.
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punctured torus group, i.e., it is a discrete free group generated by two elements
with parabolic commutator. It is well-known that every fuchsian punctured
torus group has a 7Z/2Z-extension with quotient homeomorphic to O as a
topological orbifold (cf. [40, Sect. 2]). Thus we abuse terminology and call the
extended group a fuchsian punctured torus group.

Now look at the region, F', exterior to all L;. Then this is a “fundamental
domain of I' (resp. I)) modulo (K) (resp. (K?2))" (cf. Proposition 1.1.3). This
region is called the Ford polygon of I' (resp. I). This can be regarded as the
“Dirichlet domain of I" centered at oo™, because

F={reH?|dz,Hy) < d(x,ZHy) for every Z € I'},

where H. is a sufficiently small horodisk centered at oc. This implies that
the image of OF in H2/I is equal to the cut locus of H?/I" with respect to
the cusp. i.e.. the set of points of H?/I" which has more than two shortest
geodesics to the cusp. See Proposition 5.1.3, for a description of the Ford
polygons of general fuchsian punctured torus groups.

5.2. 3-dimensional picture of the fuchsian punctured
torus group

Figure 0.3 gives a 3-dimensional picture of the group I" in Fig. 0.11. The ellip-
tic transformation P; acts on the upper half space model H? of the hyperbolic
3-space as the m-rotation around the geodesic joining the two points (j +1)/3,
where i = v/—1. (Here we identify the complex plane C with the boundary of
the closure H® = H? U C.) The isometric circle

I(Pj) = {2 € C||Pj(z)| = 1}

has center ¢(P;) = j/3 and radius 1/3. The hyperplane of H* bounded by
the isometric circle I(P;) is called the isometric hemisphere of P; and is
denoted by Ih(P;). Then P; interchanges the exterior £h(F;) and the interior
Dh(P;j) of the isometric hemisphere Ih(F;), and acts on Ih(F;) as a Euclidean
isometry. By the argument in Subsection 5.1, we see that the common exterior
N;Eh(P;), where j runs over Z, is a “fundamental domain of the action of
I (resp. I) on H? modulo (K) (resp. (K?2))". Thus it is equal to the Ford
domain Ph(I") of I'. which is defined to be the common exteriors of the
isometric hemispheres of all elements of I" that do not fix o¢ (see Definition
1.1.2 and Proposition 1.1.3). As in the previous subsection, the Ford domain
can be regarded as the “Dirichlet domain of I" centered at oo™, namely

Ph(I") = {x € B |d(x, Hoo) < d(x, ZH ) for every Z € '},

where H.. is a sufficiently small horoball centered at ~c. Thus the image of
OPh(I) in H3/I' = O x (—1.1) is equal to the cut locus of H*/I" with respect



