Discrete

Event Modelling
on Simula

G.M. Birtwistle




DEMOS
A System for

Discrete Event
Modelling on Simula

G. M. Birtwistle

University of Bradford



© G. M. Birtwistle 1979

All rights reserved. No part of this publication may be reproduced or transmitted,
in any form or by any means, without permission.

First published 1979 by

THE MACMILLAN PRESS LTD

London and Basingstoke

Associated companies in Delhi Dublin
Hong Kong Johannesburg Lagos Melbourne
New York Singapore and Tokyo

Printed in Hong Kong

British Library Cataloguing in Publication Data

Birtwistle, G M
A system for discrete event modelling on
SIMULA.—(Macmillan computer science series).
1. Computer simulation 2. DEMOS (Computer
program)
I. Title
001.4'24 QA76.9.C65

ISBN 0-333-23881-8

This book is sold subject to the standard conditions of the Net Book Agreement.

The paperback edition of this book is sold subject to the condition that it shall
not, by way of trade or otherwise, be lent, resold, hired out, or otherwise
circulated without the publisher’s prior consent in any form of binding or cover
other than that in which it is published and without a similar condition including
this condition being imposed on the subsequent purchaser.



PREFACE

This book is a primer on discrete event simulation modelling
using the DEMOS package. It is written in informal style as a
teaching text and is not meant as a reference manual. It
should thus be read from start to finish and not dipped into
at random. The book covers DEMOS fairly completely and uses
it as a vehicle in which to describe several simulation
models. As we have not aimed to produce a general text, no
attempt has been made to cover the statistical side of
discrete event simulation.

DEMOS is implemented in the general purpose language
SIMULA (an extension to ALGOL 60). Thus DEMOS programs may be
run on any computer that supports SIMULA (see references (3 -
10]). DEMOS 1is available free of charge as a SIMULA source
program (see page 145 for more details).

SIMULA (Dahl et al. [1]) itself contains simulation
primitives sufficient to build any simulation model, but
leaves it to the user himself to flesh out the primitives in
the style of his choice. While this puts the SIMULA expert in
an enviable position, it is at first sight unfortunate for the
beginner or occasional user of SIMULA. For it would seem that
he has to acquire considerable expertise in SIMULA before he
can start building out these primitives and actually get down
to describing the simulation model itself. But this is not
so. The situation was foreseen by the designers of SIMULA and
they provided a way round the problem, namely the CONTEXT (=
block prefix) mechanism. A context is a package written in
SIMULA which extends that language towards a specific problem
area. It will define the basic concepts and methods
associated with the area, but leaves it to the modeller to
apply them in his own way.

DEMOS is a context intended to help beginners in discrete
event simulation get off the ground. It augments SIMULA with
a few building blocks which provide a standardised approach to
a wide range of problems. DEMOS invites model description in
terms of ENTITIES and how they compete for RESOURCES. Written
in terms of these concepts, DEMOS programs are bona fide
SIMULA programs, but SIMULA programs which conform to a very



Preface

simple format. They can thus be written and understood
without a specialist knowledge of SIMULA. (This is very
typical of contexts: their use requires much less SIMULA
expertise than their writing.)

This book is based on material developed for
undergraduate and postgraduate courses in Discrete Systems
given at Bradford University, England, and for other courses
given to industry. It has been written in tutorial style,
each new feature being first motivated and then used in an
illustrative example. Inevitably with a book written in this
style, one or two DEMQS facilities could not be fitted in (a
list of these 1is given in chapter 8, page 142). The DEMOS
Reference Manual (Birtwistle [14]) covers the implementation
of DEMOS in full; it gives proper documentation and SIMULA
source listings for all the facilities of DEMOS.

For nearly all the DEMOS models in this book, we have
first outlined our solution pictorially by means of activity
diagrams and then given the corresponding DEMOS code. Input
and output details are also recorded where appropriate. The
main text is spread over eight chapters. Chapter 1 provides a
brief introduction to discrete event modelling, and explains
why DEMOS came to be written.

Chapter 2 provides a tutorial on that small sub-set of
SIMULA we require (a check 1list of SIMULA declaration and
statement types is given in appendix A). N.B. The reader is
assumed to have a working knowledge of ALGOL 60. ALGOL 60,
SIMULA and DEMOS programs all take the form

BEGIN
declarations;
statements;

END;

ASIDE: All programmers have idiosyncrasies and one of the
author's is to 1include semicolons before each END after the
final statement in a block or compound statement, and also
after the final END. These are optional in SIMULA, and hence
in DEMOS.

Chapter 3 1illustrates the basic DEMOS approach to
discrete event simulation model building (which has been
inherited from SIMULA). With this approach, a system is
described in terms of its constituent components (we call them
ENTITIES) and a full action history describing its behaviour



Preface

pattern is given for each entity. The separate entity
descriptions are pieced together to describe the behaviour of
the system as a whole. This approach enables the system
modeller to focus his attention on the description of one
entity at a time and is very natural.

In discrete event simulations, entities may compete with
each other for system resources, cooperate with each other to
perform a sequence of tasks, or even interrupt one another.
Chapters 4, 5, 6 and 7 consider these basic synchronisation
problems in turn, and show how they can be described in terms
of DEMOS mechanisms.

In chapter 8, we first tidy up a few loose ends and then
remark on the implementation of DEMOS as a package in SIMULA.

Each chapter contains several exercises which are best
attempted when met in the text. They form an important part
of the book: several reinforce or extend points just made in
the main text, and some form a lead into the next section.
Answers to all but two exercises are given at the end of the
book . Regretfully, space considerations prevented us from
including activity diagrams and output for all our solutions.
That would have been nice.

Many individuals have helped make this book possible by
their advice and encouragement through the vyears. Very
special thanks are due to my qurus over several years:
Kristen Nygaard (for imparting the SIMULA ethos) and Robin
Hills (the same for discrete event simulation). Alan Benson,
Ole-Johan Dahl, Roy Francis, Lars Enderin, Paul Luker, Mats
Ohlin, Rod Wild and Norman Willis read the manuscript and
helped remove several errors and infelicities of style. Any
remaining errors are solely mine. Sorry.

DEMOS itself, and all the programs contained in this
book, were developed on the Leeds University DEC System 10
computer using the excellent SIMULA compiler written by the
Swedish Defense Research Establishment, Stockholm. Thanks are
due to the Leeds University Centre for Computer Studies for
permission to use their machine, and to several individuals
there for their able, cheerful, and willing assistance.

This manuscript was prepared by the author using the DEC
utilities SOS and RUNOFF. The page size of 50 lines by A2
characters has meant some compromises. Firstly not all our
diagrams could be fitted on to a single page: these we have



Preface

managed to split in a reasonable manner. Secondly program
listings, which can usually be spread over 72 columns, have
had to be narrowed down. However, because SIMULA 1is a
free-format language, only a few programs seem to have
suffered. Finally, the output from DEMOS programs also
reckons on a 72 character line. Accordingly all output
listings have been 'doctored' by squeezing out  some
unnecessary blanks.

In the formal description of SIMULA there are several
symbols which are not reproducible on standard line printers.
The representation of SIMULA programs in this book follows the
recommendations of the SIMULA Standards Group. Key words are
reserved and written in upper case (e.g. BEGIN, PROCEDURE,
IF). Other changes are: array brackets('[' replaced by ‘('
and ']' by ')'), exponentiation ('**'), integer division
('//'), greater than or equal ('>='), less than or equal
('<='), not equal (NE), logical and (AND), 1logical or (OR),
logical not (NOT), and power of 10 (E).



CONTENTS

PREFACE

1. INTRODUCTION

2. THE SIMULA FOUNDATION

2.1

2¢2

3.2

3.3

OBJECTS

EXERCISES 2.1-2.2

CLASS VEHICLE

EXERCISES 2.3-2.5

SUB-CLASSES OF VEHICLE

SECURITY OF DATA ACCESS
==, =/=, IS and IN
EXERCISE 2.6

CONTEXTS

EXERCISE 2.7

ENTITY APPROACH TO MODELLING

THE FIRST MODEL

EXAMPLE 1: PORT SYSTEM

EXERCISE 3.1

ACTIVITIES

EXERCISES 3.2-3.4

A FIRST LOOK AT DEMOS

EXERCISES 3.5-3.8

EXAMPLE 2: PORT SYSTEM REVISITED
Event tracing
Pseudo-random number generation
The DEMOS random number generators
Dynamic entity generation
Deadlock

EXERCISES 3.9-3.15

4. ENTITY-RESOURCE SYNCHRONISATIONS

4,1

4.2

CLASS RES

EXAMPLE 3: READERS AND WRITERS
READERS AND WRITERS WITH PRIORITY
EXERCISES 4.1-4.7

CLASS BIN

EXAMPLE 5: CAR FERRY

EXERCISES 4.8-4.12



ENTITY-ENTITY COOPERATIONS

5.1

5.2

COOPT

EXAMPLE 6: INFORMATION SYSTEM
EXERCISES 5.1-5.6

FIND

EXAMPLE 7: TANKER SIMULATION

WAITS UNTIL

6.1

6.2

6.3

CONDITION QUEUES

EXAMPLE 8: PORT SYSTEM WITH TIDES
EXAMPLE 9: TANKER SIMULATION AGAIN
EXERCISES 6.1-6.10

CONDITION QUEUES WITH ALL SET
EXAMPLE 10: DINING PHILOSOPHERS
EXERCISES 6.11-6.12

WAITS UNTIL: SIGNAL VERSUS SNOOPY
EXERCISE 6.13

INTERRUPTS

7.1

7.2

SIMPLE BREAKDOWNS
EXERCISES 7.1-7.3
INTERRUPTS

EXAMPLE 11: COAL HOPPER
EXAMPLE 12: QUARRY
Schedul ing With NOW
EXERCISES 7.4-7.6

SUMMING UP

8.1

8.2

SOME LOOSE ENDS

DEMOS features not covered

THE SIMULA IMPLEMENTATION OF DEMOS
Distribution of DEMOS

Tail piece

REFERENCES

APPENDICES

OUTLINE OF SIMULA

OUTLINE OF DEMOS

The MAIN PROGRAM

DEMOS synchronisations

DEMOS RANDOM NUMBER GENERATORS

A
B

C

ANSWERS TO EXERCISES

INDEX

76
76
81
90
94
95

100
100
100
107
111
113
113
117
118
121

122
122
123
125
125
130
137
139

141
141
142
143
145
146

147
152
155
158
158
160
163

211



1 INTRODUCTION

All around us in everyday life are complex systems of men and
machines. Automobile plants, steel foundries, telephone
exchanges, ticket reservation systems, banking systems, air
flight control systems, local transport systems, etc. spring
to mind. For these to function properly, we need to be able
to understand them and how they react to emergencies (perhaps
a bus breaks down in the rush hour), continual high pressures
(rush hour traffic) as well as under normal circumstances
(traffic in off-peak periods). Since the world is continually
changing, systems have to adapt to new circumstances, e.g.
how does the building of a new town nearby affect the local
bus company? Which extra services should be provided and thus
how many extra buses and crew will be needed? We may also
need to implement totally fresh systems - how then do we
justify and test our designs?

For all but the very simplest systems, we cannot just go
ahead, implement a change and see what happens. It may prove
too costly (who would build a new metro system in a town 'just
to see if it is needed'?); it may even prove catastrophic (a
new air traffic control system, or a new control program for a
chemical plant). We have thus a distinct need to be able to
experiment with adaptations of existing systems and test
proposed designs without actually disturbing them or building
them respectively. Here simulation can help.

Simulation is a technique for representing a dynamic
system by a model in order to gain information about the
underlying system. If the behaviour of the model correctly
matches the relevant behaviour characteristics of the
underlying system, we may draw inferences about the system
from experiments with the model and thus spare ourselves any
disasters.

Practical simulation work involves:
1. specification of the problem and satisfactory answers

to such questions as: "Is it worth doing?", "Can it be done
within our time scale and budget?", etc.



2 Introduction

2. building a model which describes the system. We have
used an adaptation of the well known activity diagram
technique (explained in chapter 3) to represent pictorially
the logic of the models developed in this book. 1In real life
situations, it is important to have such a high level
representation of the model so that the modeller can discuss
his understanding of reality with the specialists who run the
actual system. Whoever they are, be they managers, foremen,
or workers, they are unlikely to understand computer programs
and so cannot be expected to read a program text and point out
logical flaws in a model. Yet feedback from them is
essential. They must understand (at least) how their part of
the system is represented in the model and so be able to
confirm what has been done correctly, point out what has been
omitted, and draw attention to those parts which do not
function exactly as the official rule book states. Not many
systems work exactly as planned and the modeller has to
describe a given system as it actually is.

3. converting the model into an operating DEMOS program.
This step is quite straightforward, almost mechanical, from
the appropriate activity diagram - a second important reason
for using them. Indeed, activity cycle diagrams can be used
as high level flow charts for simulations written in activity,
event, process or transaction mode.

A, wvalidating the model by checking its consistency with
the underlying system before any changes are made. The
success of this validation establishes a basis of confidence
in the results that the model generates under new conditions.
Inadequate consistency will cause the modeller to try again
from step 2 or step 3 above.

5. using the computer simulation program as an
experimental tool to study proposed changes in the underlying
system that the program represents.

This book makes no attempt to cover steps 1, 4, or 5
above. For thorough accounts of the important topics of model
validation, output analysis, and the design of experiments,
etc., the reader is instead referred to the excellent texts of
Fishman (32] and Shannon [37].

In this book we cover steps 2 and 3, first representing
our models by activity diagrams and then presenting the
corresponding DEMOS programs.



Introduction 3

Unlike most languages used for discrete event simulation,
SIMULA does not force the user into one style of modelling.
(See Hills [13] for a non-trivial model coded first in
activity, then event, and finally process mode.) The designers
of SIMULA included a standard context called SIMULATION which
contains a sort of common denominator to all these three
styles, but left it to the user to build this out. Thus if
SIMULATION is to be used as it stands, a style of model
building has to be developed and the user has to write his own
synchronisation routines, data collection routines, etc. Some
of these prove to be fairly subtle.

DEMOS extends SIMULATION by a few basic concepts which
provide the operational research worker with a standardised
approach to a wide range of discrete event problems. These
are primarily the ENTITY for mirroring major dynamic model
components whose complete life cycles warrant description in
the model, and the RESOURCE for representing minor components.
In addition, DEMOS automates as much as possible (scheduling,
data collection, report generation), and provides event
tracing to help in model validation and debugging. Happily
these turn out to be the very areas in which the deepest
knowledge of SIMULA itself is required. Along with the
simplifications inherent in a prescribed model structure, this
means that DEMOS programs can be written in a surprisingly
small sub-set of SIMULA. Teaching experience has shown that
this can be learnt quickly, and the beginner is very soon able
to concentrate his attention squarely on the construction of
the model. '

The approach to model building that we have used remains
viable as the range of problems widens and their degree of
difficulty sharpens. Despite its modest design aims, DEMOS
has been successfully used to tackle some realistic industrial
simulations. Nothing learnt by the beginner need be unlearnt
as his experience grows. But DEMOS is not the panacea for all
discrete event problems: eventually the user will surely run
into a problem which is not capable of being modelled cleanly
in complete detail in DEMOS. Then the user can fall back on
the host language SIMULA. Because DEMOS programs are SIMULA
programs, all the power of SIMULA is directly available behind
the building blocks provided by DEMOS. Any feature not
provided by DEMOS can be written directly into a DEMOS program
as SIMULA code. Again, any user can add or even replace DEMOS
features by standard SIMULA mechanisms. Notice that at this
stage of his career, the user will have already written
several DEMOS (= SIMULA) programs and picking up the required



4 Introduction

expertise in SIMULA proper is no longer such a problem. Much
has been absorbed by osmosis.

DEMOS has taken some time to evolve. Vaucher [19] 1long
ago suggested writing a GPSS-like package in SIMULA and
implemented such a package himself. The author did the same
and learnt some valuable lessons. In particular, GPSS allows
only one transaction type (which closely parallels a process
in SIMULA or an entity in DEMOS). For many examples this is
sufficient, but the rest have to be bent into this format. It
certainly concentrates the mind wonderfully well. Experience
with GPSS teaches one how to do a lot within a simple
framework - how to separate out and de-emphasize minor
components and resist the urge to overmodel. GPSS also
teaches the value of resource types, and standard methods of
synchronisation, automatic report generation and data
collection.

About this time, the author collaborated with Robin
Hills. Robin already had a considerable background in both
practical simulation work and simulation language design (see
Hills [22, 23]). This background in activity based languages
proved especially valuable when we sought for ways of tackling
models involving complicated decisions - an area in which GPSS
is weak. The product of our joint efforts, called SIMON 75
(see Hills and Birtwistle [16]), used WAITUNTIL statements to
make the scheduling of events as easy as possible and in a
uniform style. Waits until are expensive on machine time, but
the package had some merit in that it was easy to learn and
resulted in concise yet readable programs.

It came as a pleasant surprise when some 50 or so
non-trivial SIMON 75 programs were analysed by the author for
their usage of wait until. They proved necessary in only a
few cases, and it was at once apparent that a much faster new
version could be implemented which would retain the ease of
learning and textual clarity of the old. Along with a few
other improvements, this was developed into DEMOS.



2 THE SIMULA FOUNDATION

This chapter is a short introduction to the highlights of
SIMULA. It is not meant to be exhaustive: it merely aims to
give the reader with little or no prior knowledge of SIMULA
enough understanding to follow through the later chapters on
DEMOS. Full accounts of SIMULA are found in Birtwistle et
al. (11] and Rohlfing [12]. The central new ideas in SIMULA
are those of the OBJECT and of the CONTEXT. An OBJECT is used
in SIMULA to mirror the characteristics and behaviour of a
major component in the system under description. For example,
a boat in a harbour simulation or a furnace in a steel mill
simulation. Objects with similar characteristics and the same
behaviour pattern have the same single definition called a
CLASS DECLARATION. A CONTEXT is roughly a library of object
definitions common to one particular topic, e.g. a HARBOUR
context may contain class declarations for boats, cranes,
tugs, the tide, etc., and a TRAFFIC context may contain class
declarations for cars, trucks, etc. Once defined, a context
serves as a library of predefined building blocks. It is
available to any number of programs by its very occurrence
(almost, see later) as prefix to a program, e.g.

TRAFFIC
BEGIN
program using cars, trucks, etc.;
END;

The remainder of this chapter is a tutorial on the purpose and
usage of objects and contexts.

2.1 OBJECTS

Objects are used in SIMULA programs to mirror major components
in the actual system under investigation. Each major
component in the actual system is mapped into a corresponding
object in the SIMULA program. As an example, consider a
harbour simulation involving boats, lorries, etc. Each actual
boat will be represented in the SIMULA program by a
corresponding boat object. It follows that the boat object
has to reflect all those features of the actual boat deemed



6 The SIMULA foundation

relevant in the model: not only its physical characteristics
such as its tonnage, current load, etc., but also the actions
it carries out as it wends its own way through the harbour
system.

->! sail in; !
! / ! unload; !
! / ! sail out; !

Figure 2.1 A boat and the corresponding boat object.

Figure 2.1 introduces our standard way of depicting
objects - as rectangular boxes divided into three levels. The
top level gives the class of the object (here BOAT), the
middle level gives the ATTRIBUTES (data characteristics) of
the object (here TONNAGE and LOAD shown with current values of
15 and 4 respectively, perhaps in units of 1000 tons), and the
bottom level gives the life history of the boat object as a
sequence of actions. Here, these are informally shown as

sail in; unload; sail out;

N.B. The middle and bottom layers may be empty, in which case
they will be omitted.

Where it sheds light on the situation, the current action
of an object will be marked with an arrow, thus '->'., This
marker is called 1its LOCAL SEQUENCE CONTROL (or LSC for
short). The boat object in figure 2.1 represents an actual
boat sailing in. Fiqgure 2.2 shows how a real world situation
involving three boats (one sailing out, one sailing in, and
one unloading) and one lorry (loading) would be mapped into a
SIMULA program. Notice how the LSCs of the boat objects move
on in tandem as the actual boats they represent progress
through the harbour system.



The SIMULA foundation 7

@
@ Q
@ Q Q
_ @ @
1 Q
1 U
1 1
X 1 (B 1
\ 1 N\ /T o
\ ! / \ /
. ! / \ / 0. 0
. / 5 i
o . - . REAL
. . . WORLD
. . . .MODEL
! BOAT ! ! BOAT ! ! BOAT ! .
I TONNAGE 9! | TONNAGE 8! !TONNAGE 5! .
'LOAD 0! !LOAD 41 {LOAD 2 .
'sail in; ! ->!sail in; ! !'sail in; ! .
tunload; ! tunload; ! ->!unload; ! .
->!sail out;! !sail out;! !'sail out;! .

! LORRY !.ceceeceonncccccss

'REG 1975!
1LOAD 0!
->!11oad; !

tdeliver; !

Figure 2.2 Objects representing 3 boats and 1 lorry.

Now although their individual data values are different,
and they are currently performing different actions, the three
boat objects have exactly the same layout of attributes and
the same action sequence. The objects are said to be 'of the
same class' and are defined by a single CLASS DECLARATION.
Here it is in SIMULA (partly informally)



8 The SIMULA foundation

CLASS BOAT;

BEGIN INTEGER TONNAGE, LOAD;
sail in;
unload;
sail out;

EN’D***BOAT***;

N.B. In this program segment (and in others scattered
throughout this book), we use a blending of formal SIMULA and
natural English wherever it suits us. Upper case letters and
punctuation are formal 1language elements which are part of
SIMULA itself. They have precisely defined meanings and must
be used strictly according to the rules of SIMULA. (In the
above we have the key words CLASS, BEGIN, INTEGER, and END,
and the comma ',' and semicolon ';' as formal elements. The
phrase 'END***BOAT***;' is exactly equivalent to 'END; ' - we
use this form of comment, which is inherited from ALGOL A0,
often as it helps delineate the textual end of class and
procedure declarations quite clearly.) When it suits us to be
informal, we use lower case letters. Above, we have sketched
the action sequence of CLASS BOAT informally as its precise
formulation in SIMULA is of no immediate relevance. In this
way we can postpone detail until it is really necessary.

We need a class declaration for each type of object
appearing in a SIMULA program. Each declaration can be
thought of as a mould from which objects of the same layout
can be created as and when required. Several objects of the
same class may be in existence and operating at the same time.
To create a boat object in a SIMULA program, we execute the
command NEW BOAT. A fresh boat object is created each time
this command is executed. If we have one or several boat
objects in a SIMULA program, we may wish to name them
individually. To create and name two boat objects QE2 and
MARIECELESTE respectively we would write

QE2 :— NEW BOAT;
MARIECELESTE :- NEW BOAT;

(:- is read ‘'denotes'). QE2 and MARIECELESTE are SIMULA
variables of a type not found in ALGOL 60. They are REFERENCE
VARIABLES of type REF(BOAT) (which is read as 'ref to BOAT')
and are declared so

REF (BOAT)QE2, MARIECELESTE;

QE2 and MARIECELESTE are variables capable of referencing boat



