Tutorial

LNCS 3465

5th International School on Formal Methods for the Design
of Computer, Communication, and Software Systems
SFM-Moby 2005, Bertinoro, Italy, April 2005

Advanced Lectures

@ Springer

Marco Bernardo Alessandro Bogliolo (Eds.)

Formal Methods
for Mobile Computing

5th International School on Formal Methods for the Design
of Computer, Communication, and Software Systems
SFM-Moby 2005

Bertinoro, Italy, April 26-30, 2005

Advanced Lectures

AR

E200501322

@ Springer

Volume Editors

Marco Bernardo

Alessandro Bogliolo

Universita degli Studi di Urbino "Carlo Bo"
Istituto di Scienze e Tecnologie dell’Informazione
Piazza della Repubblica 13, 61029 Urbino, Italy
E-mail: {bernardo, bogliolo} @sti.uniurb.it

Library of Congress Control Number: 2005924063

CR Subject Classification (1998): D.2, D.3, E3, C.3, C24

ISSN 0302-9743
ISBN-10 3-540-25697-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25697-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11419822 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3465

Preface

This volume collects a set of papers accompanying the lectures of the fifth edition
of the International School on Formal Methods for the Design of Computer,
Communication and Software Systems (SFM).

This series of schools addresses the use of formal methods in computer science
as a prominent approach to the rigorous design of computer, communication and
software systems. The main aim of the SFM series is to offer a good spectrum
of current research in foundations as well as applications of formal methods,
which can be of help for graduate students and young researchers who intend to
approach the field.

SFM 2005 (Moby) was devoted to formal methods and tools for the design
of mobile systems and mobile communication infrastructures. This volume is
organized into four parts related to mobile computing, which cover models and
languages, scalability and performance, dynamic power management, and mid-
dleware support. Each part is composed of two papers.

The opening paper by Montanari and Pistore gives an overview of history-
dependent automata, an extension of ordinary automata that overcomes their
limitations in dealing with named calculi. In particular, the authors show that
history-dependent automata allow for a compact representation of m-calculus
processes, which is suitable both for theoretical investigations and for the ver-
ification of models of agents and code mobility. Bettini and De Nicola’s pa-
per presents X-KLAIM, an experimental programming language specifically de-
signed to develop distributed systems composed of several components interact-
ing through multiple distributed tuple spaces and mobile code. Through a series
of examples, the authors show that many mobile code programming paradigms
can be naturally implemented by means of the considered language, which com-
bines explicit localities as first-class data with coordination primitives.

Gerla, Chen, Lee, Zhou, Chen, Yang and Das provide an introduction to
MANET, a mobile ad hoc wireless network established for a special, often ex-
temporaneous service customized to applications. After emphasizing the self-
configurability, mobility and scalability attributes of MANET, the authors con-
centrate on mobility and show its impact on protocols and operations. Grassi
presents an overview of the performance issues raised by the high variability and
heterogeneity of mobile systems, together with some approaches to the careful
planning of the performance validation of such systems. The author then focuses
on the definition of model-based transformations from design-oriented models to
analysis-oriented models that comprise non-functional attributes.

Acquaviva, Aldini, Bernardo, Bogliolo, Bonta and Lattanzi illustrate in their
paper a methodology for predicting the impact on the overall system functionality
and efficiency of the introduction of a dynamic power management policy within
a battery-powered mobile device. The predictive methodology relies on a com-

VI Preface

bination of formal description techniques, noninterference analysis, and perfor-
mance evaluation to properly tune the dynamic power manager operation rates.
The methodology is then used by Acquaviva, Bonta and Lattanzi in the frame-
work of the IEEE 802.11 standard, in order to provide a power-accurate model of
a wireless network interface card that allows the energy/performance trade-off to
be studied as a function of traffic patterns imposed by the applications.

Lattanzi, Acquaviva and Bogliolo address the limited storage memory of wire-
less mobile terminals through the concept of network virtual memory. The au-
thors first compare the performance and energy of network swapping with those
of local swapping on microdrives and flash memories, then present an infrastruc-
ture providing efficient remote memory access to mobile terminals. The closing
paper, by Corradini and Merelli, reports on Hermes, a middleware system for
the design and the execution of activity-based applications in distributed envi-
ronments. While middleware for mobile computing has typically been developed
to support physical and logical mobility, Hermes provides an integrated envi-
ronment where application-domain experts can focus on designing the activity
workflow.

We believe that this book offers a quite comprehensive view of what has
been done and what is going on worldwide at present in the field of formal
methods for mobile computing. We wish to thank all the lecturers and all the
participants for a lively and fruitful school. We also wish to thank the whole staff
of the University Residential Center of Bertinoro (Italy) for the organizational
and administrative support, as well as the Regione Marche, which sponsored the
school within the CIPE 36/2002 framework.

April 2005 Marco Bernardo and Alessandro Bogliolo
SFM 2005 (Moby) Directors

Lecture Notes in Computer Science

For information about Vols. 1-3358

please contact your bookseller or Springer

Vol. 3467: J. Giesl (Ed.), Term Rewriting and Applica-
tions. XIII, 517 pages. 2005.

Vol. 3465: M. Bernardo, A. Bogliolo (Eds.), Formal Meth-
ods for Mobile Computing. VII, 271 pages. 2005.

Vol. 3461: P. Urzyczyn (Ed.), Typed Lambda Calculi and
Applications. XI, 433 pages. 2005.

Vol. 3459: R. Kimmel, N. Sochen, J. Weickert (Eds.), Scale
Space and PDE Methods in Computer Vision. XI, 634
pages. 2005.

Vol. 3456: H. Rust, Operational Semantics for Timed Sys-
tems. XII, 223 pages. 2005.
Vol. 3455: H. Treharne, S. King, M. Henson, S. Schneider

(Eds.), ZB 2005: Formal Specification and Development
in Z and B. XV, 493 pages. 2005.

Vol. 3454: J.-M. Jacquet, G.P. Picco (Eds.), Coordination
Models and Languages. X, 299 pages. 2005.

Vol. 3453: L. Zhou, B.C. Ooi, X. Meng (Eds.), Database
Systems for Advanced Applications. XXVII, 929 pages.
200s.

Vol. 3452: F. Baader, A. Voronkov (Eds.), Logic for Pro-
gramming, Artificial Intelligence, and Reasoning. XI, 562
pages. 2005. (Subseries LNAI).

Vol. 3450: D. Hutter, M. Ullmann (Eds.), Security in Per-
vasive Computing. XI, 239 pages. 2005.

Vol. 3449: F. Rothlauf, J. Branke, S. Cagnoni, D.W. Corne,
R. Drechsler, Y. Jin, P. Machado, E. Marchiori, J. Romero,
G.D. Smith, G. Squillero (Eds.), Applications on Evolu-
tionary Computing. XX, 631 pages. 2005.

Vol. 3448: G.R. Raidl, J. Gottlieb (Eds.), Evolutionary
Computation in Combinatorial Optimization. XI, 271
pages. 2005.

Vol. 3447: M. Keijzer, A. Tettamanzi, P. Collet, J.v.
Hemert, M. Tomassini (Eds.), Genetic Programming.
XIII, 382 pages. 2005.

Vol. 3444: M. Sagiv (Ed.), Programming Languages and
Systems. XIII, 439 pages. 2005.

Vol. 3443: R. Bodik (Ed.), Compiler Construction. XI, 305
pages. 2005.

Vol. 3442: M. Cerioli (Ed.), Fundamental Approaches to
Software Engineering. XIII, 373 pages. 2005.

Vol. 3441: V. Sassone (Ed.), Foundations of Software Sci-
ence and Computational Structures. XVIII, 521 pages.
2005.

Vol. 3440: N. Halbwachs, L.D. Zuck (Eds.), Tools and
Algorithms for the Construction and Analysis of Systems.
XVII, 588 pages. 2005.

Vol. 3439: R.H. Deng, F. Bao, H. Pang, J. Zhou (Eds.),
Information Security Practice and Experience. XII, 424
pages. 2005.

Vol. 3437: T. Gschwind, C. Mascolo (Eds.), Software En-
gineering and Middleware. X, 245 pages. 2005.

Vol. 3436: B. Bouyssounouse, J. Sifakis (Eds.), Embedded
Systems Design. XV, 492 pages. 2005.

Vol. 3434: 1. Brun, M. Vento (Eds.), Graph-Based Repre-
sentations in Pattern Recognition. XII, 384 pages. 2005.

Vol. 3433: S. Bhalla (Ed.), Databases in Networked Infor-
mation Systems. VII, 319 pages. 2005.

Vol. 3432: M. Beigl, P. Lukowicz (Eds.), Systems Aspects
in Organic and Pervasive Computing - ARCS 2005. X,
265 pages. 2005.

Vol. 3431: C. Dovrolis (Ed.), Passive and Active Network
Measurement. XII, 374 pages. 2005.

Vol. 3429: E. Andres, G. Damiand, P. Lienhardt (Eds.),
Discrete Geometry for Computer Imagery. X, 428 pages.
2005.

Vol. 3427: G. Kotsis, O. Spaniol, Wireless Systems and
Mobility in Next Generation Internet. VIII, 249 pages.
2005.

Vol. 3423: J.L. Fiadeiro, P.D. Mosses, F. Orejas (Eds.), Re-
cent Trends in Algebraic Development Techniques. VIII,
271 pages. 2005.

Vol. 3422: R.T. Mittermeir (Ed.), From Computer Literacy
to Informatics Fundamentals. X, 203 pages. 2005.

Vol. 3421: P. Lorenz, P. Dini (Eds.), Networking - ICN
2005, Part II. XXXV, 1153 pages. 2005.

Vol. 3420: P. Lorenz, P. Dini (Eds.), Networking - ICN
2005, Part I. XXXV, 933 pages. 2005.

Vol. 3419: B. Faltings, A. Petcu, F. Fages, F. Rossi (Eds.),
Constraint Satisfaction and Constraint Logic Program-
ming. X, 217 pages. 2005. (Subseries LNAI).

Vol. 3418: U. Brandes, T. Erlebach (Eds.), Network Anal-
ysis. XII, 471 pages. 2005.

Vol. 3416: M. Bohlen, J. Gamper, W. Polasek, M.A. Wim-
mer (Eds.), E-Government: Towards Electronic Democ-
racy. XIII, 311 pages. 2005. (Subseries LNAI).

Vol. 3415: P. Davidsson, B. Logan, K. Takadama (Eds.),
Multi-Agent and Multi-Agent-Based Simulation. X, 265
pages. 2005. (Subseries LNAI).

Vol. 3414: M. Morari, L. Thiele (Eds.), Hybrid Systems:
Computation and Control. XII, 684 pages. 2005.

Vol. 3412: X. Franch, D. Port (Eds.), COTS-Based Soft-
ware Systems. XVI, 312 pages. 2005.

Vol. 3411: S.H. Myaeng, M. Zhou, K.-F. Wong, H.-J.
Zhang (Eds.), Information Retrieval Technology. XIII,
337 pages. 2005.

Vol. 3410: C.A. Coello Coello, A. Herndndez Aguirre,

E. Zitzler (Eds.), Evolutionary Multi-Criterion Optimiza-
tion. XVI, 912 pages. 2005.

Vol. 3409: N. Guelfi, G. Reggio, A. Romanovsky (Eds.),
Scientific Engineering of Distributed Java Applications.
X, 127 pages. 2005.

Vol. 3408: D.E. Losada, J.M. Ferndndez-Luna (Eds.), Ad-
vances in Information Retrieval. X VII, 572 pages. 2005.
Vol. 3407: Z. Liu, K. Araki (Eds.), Theoretical Aspects of
Computing - ICTAC 2004. X1V, 562 pages. 2005.

Vol. 3406: A. Gelbukh (Ed.), Computational Linguistics
and Intelligent Text Processing. XVII, 829 pages. 2005.
Vol. 3404: V. Diekert, B. Durand (Eds.), STACS 2005.
XVI, 706 pages. 2005.

Vol. 3403: B. Ganter, R. Godin (Eds.), Formal Concept
Analysis. X1, 419 pages. 2005. (Subseries LNAI).

Vol. 3401: Z. Li, L.G. Vulkov, J. Waéniewski (Eds.), Nu-
merical Analysis and Its Applications. XIII, 630 pages.
2005.

Vol. 3399: Y. Zhang, K. Tanaka, J.X. Yu, S. Wang, M. Li
(Eds.), Web Technologies Research and Development -
APWeb 2005. XXII, 1082 pages. 2005.

Vol. 3398: D.-K. Baik (Ed.), Systems Modeling and Sim-
ulation: Theory and Applications. XIV, 733 pages. 2005.
(Subseries LNAI).

Vol. 3397: T.G. Kim (Ed.), Artificial Intelligence and Sim-
ulation. XV, 711 pages. 2005. (Subseries LNAI).

Vol. 3396: R.M. van Eijk, M.-P. Huget, F. Dignum (Eds.),
Agent Communication. X, 261 pages. 2005. (Subseries
LNAI).

Vol. 3395: J. Grabowski, B. Nielsen (Eds.), Formal Ap-
proaches to Software Testing. X, 225 pages. 2005.

Vol. 3394: D. Kudenko, D. Kazakov, E. Alonso (Eds.),
Adaptive Agents and Multi-Agent Systems III. VIII, 313
pages. 2005. (Subseries LNAI).

Vol. 3393: H.-J. Kreowski, U. Montanari, F. Orejas, G.
Rozenberg, G. Taentzer (Eds.), Formal Methods in Soft-
ware and Systems Modeling. XXVII, 413 pages. 2005.

Vol. 3392: D. Seipel, M. Hanus, U. Geske, O. Barten-
stein (Eds.), Applications of Declarative Programming
and Knowledge Management. X, 309 pages. 2005. (Sub-
series LNAI).

Vol. 3391: C. Kim (Ed.), Information Networking. XVII,
936 pages. 2005.

Vol. 3390: R. Choren, A. Garcia, C. Lucena, A. Ro-
manovsky (Eds.), Software Engineering for Multi-Agent
Systems III. XII, 291 pages. 2005.

Vol. 3389: P. Van Roy (Ed.), Multiparadigm Programming
in Mozart/OZ. XV, 329 pages. 2005.

Vol. 3388: J. Lagergren (Ed.), Comparative Genomics.
VII, 133 pages. 2005. (Subseries LNBI).

Vol. 3387: J. Cardoso, A. Sheth (Eds.), Semantic Web
Services and Web Process Composition. VIII, 147 pages.
2005.

Vol. 3386: S. Vaudenay (Ed.), Public Key Cryptography -
PKC 2005. 1X, 436 pages. 2005.

Vol. 3385: R. Cousot (Ed.), Verification, Model Checking,
and Abstract Interpretation. XII, 483 pages. 2005.

Vol. 3383: J. Pach (Ed.), Graph Drawing. XII, 536 pages.
2005.

Vol. 3382: J. Odell, P. Giorgini, J.P. Miiller (Eds.), Agent-
Oriented Software Engineering V. X, 239 pages. 2005.

Vol. 3381: P. Vojta§, M. Bielikov4, B. Charron-Bost, O.
Sykora (Eds.), SOFSEM 2005: Theory and Practice of
Computer Science. XV, 448 pages. 2005.

Vol. 3380: C. Priami, Transactions on Computational Sys-
tems Biology L. IX, 111 pages. 2005. (Subseries LNBI).

Vol. 3379: M. Hemmje, C. Niederee, T. Risse (Eds.), From
Integrated Publication and Information Systems to Infor-
mation and Knowledge Environments. XXIV, 321 pages.
2005.

Vol. 3378: J. Kilian (Ed.), Theory of Cryptography. XII,
621 pages. 2005.

Vol. 3377: B. Goethals, A. Siebes (Eds.), Knowledge Dis-
covery in Inductive Databases. VII, 190 pages. 2005.

Vol. 3376: A. Menezes (Ed.), Topics in Cryptology — CT-
RSA 2005. X, 385 pages. 2005.

Vol. 3375: M.A. Marsan, G. Bianchi, M. Listanti, M. Meo
(Eds.), Quality of Service in Multiservice IP Networks.
XTI, 656 pages. 2005.

Vol. 3374: D. Weyns, H.V.D. Parunak, F. Michel (Eds.),
Environments for Multi-Agent Systems. X, 279 pages.
2005. (Subseries LNAI).

Vol. 3372: C. Bussler, V. Tannen, 1. Fundulaki (Eds.), Se-
mantic Web and Databases. X, 227 pages. 2005.

Vol. 3371: M.W. Barley, N. Kasabov (Eds.), Intelligent
Agents and Multi-Agent Systems. X, 329 pages. 2005.
(Subseries LNAI).

Vol. 3370: A. Konagaya, K. Satou (Eds.), Grid Computing
in Life Science. X, 188 pages. 2005. (Subseries LNBI).

Vol. 3369: V.R. Benjamins, P. Casanovas, J. Breuker, A.
Gangemi (Eds.), Law and the Semantic Web. XII, 249
pages. 2005. (Subseries LNAI).

Vol. 3368: L. Paletta, J.K. Tsotsos, E. Rome, G.W.
Humphreys (Eds.), Attention and Performance in Com-
putational Vision. VIII, 231 pages. 2005.

Vol. 3367: W.S. Ng, B.C. Ooi, A. Ouksel, C. Sartori (Eds.),
Databases, Information Systems, and Peer-to-Peer Com-
puting. X, 231 pages. 2005.

Vol. 3366: 1. Rahwan, P. Moraitis, C. Reed (Eds.), Argu-
mentation in Multi-Agent Systems. XII, 263 pages. 2005.
(Subseries LNAI).

Vol. 3365: G. Mauri, G. Piun, M.J. Pérez-Jiménez, G.
Rozenberg, A. Salomaa (Eds.), Membrane Computing.
IX, 415 pages. 2005.

Vol. 3363: T. Eiter, L. Libkin (Eds.), Database Theory -
ICDT 2005. XI, 413 pages. 2004.

Vol. 3362: G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet,
T. Muntean (Eds.), Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices. IX, 257 pages.
2005.

Vol. 3361: S. Bengio, H. Bourlard (Eds.), Machine Learn-
ing for Multimodal Interaction. XII, 362 pages. 2005.

Vol. 3360: S. Spaccapietra, E. Bertino, S. Jajodia, R. King,
D. McLeod, M.E. Orlowska, L. Strous (Eds.), Journal on
Data Semantics II. XI, 223 pages. 2005.

Vol. 3359: G. Grieser, Y. Tanaka (Eds.), Intuitive Human
Interfaces for Organizing and Accessing Intellectual As-
sets. XIV, 257 pages. 2005. (Subseries LNAI).

FHE. 372

Table of Contents

Part I: Models and Languages

History-Dependent Automata: An Introduction
Ugo Montanari, Marco Pistoreoooviiiiiieiiiiiiinnnn.

Mobile Distributed Programming in X-KLAIM
Lorenzo Bettini, Rocco De Nicolaccccoiiiiiiiiinaan..

Part II: Scalability and Performance

Dealing with Node Mobility in Ad Hoc Wireless Network
Mario Gerla, Ling-Jyh Chen, Yeng-Zhong Lee, Biao Zhou,
Jiwei Chen, Guang Yang, Shirshanka Das.........................

Performance Analysis of Mobile Systems
VATCENED GRGBSGE. v 5v.5 5 55 50w 50 e i 07555 5 i s 0 28086 3 9 s 0908

Part III: Dynamic Power Management

A Methodology Based on Formal Methods for Predicting the Impact of
Dynamic Power Management

Andrea Acquaviva, Alessandro Aldini, Marco Bernardo,

Alessandro Bogliolo, Edoardo Bonta, Emanuele Lattanzi

Dynamic Power Management Strategies Within the IEEE 802.11

Standard
Andrea Acquaviva, Edoardo Bontda, Emanuele Lattanzi

Part IV: Middleware Support

Network Swapping
Emanuele Lattanzi, Andrea Acquaviva, Alessandro Bogliolo

Hermes: Agent-Based Middleware for Mobile Computing
Flavio Corradini, Emanuela Merelli

o0 1) 5 00 S [T 6 L= canN e T YT TLT

History-Dependent Automata:
An Introduction

Ugo Montanari! and Marco Pistore?

1 University of Trento, Italy
marco.pistore@unitn.it
2 University of Pisa, Italy
ugo@di.unipi.it

Abstract. In this paper we give an overview of History Dependent Automata, an
extension of ordinary automata that overcomes their limitations in dealing with
named calculi. In a named calculus, the observations labelling the transitions of
a system may contain names which represent features such as communication
channels, node identifiers, or the locations of the system. An example of named
calculus is w-calculus, which has the ability of sending channel names as mes-
sages and thus of dynamically reconfiguring process acquaintances and of model-
ing agents and code mobility. We show that History-Dependent Automata allow
for a compact representation of m-calculus processes which is suitable both for
theoretical investigations and for practical purposes such as verification.

1 Introduction

In the context of process calculi (e.g., Milner’s CCS [Mil89]), automata (or labelled
transition systems) are often used as operational models. They allow for a simple rep-
resentation of process behavior, and many concepts and theoretical results for these
process calculi are independent from the particular syntax of the languages and can be
formulated directly on automata. In particular, this is true for the behavioral equiva-
lences and preorders which have been defined for these languages, like bisimulation
equivalence [Mil89, Par80]: in fact they take into account only the labelled actions a
process can perform. Automata are also important from an algorithmic point of view:
efficient and practical techniques and tools for verification [IP96, Mad92] have been de-
veloped for finite-state automata. Finite state verification is successful here, differently
than in ordinary programming, since the control part and the data part of protocols
and hardware components can be often cleanly separated, and the control part is usu-
ally both quite complex and finite state. Particularly interesting is also the possibility to
associate to each automaton — and, consequently, to each process — a minimal realiza-
tion, i.e., a minimal automaton which is equivalent to the original one. This is important
both from a theoretical point of view — equivalent systems give rise to the same (up
to isomorphism) minimal realization — and from a practical point of view — smaller
state spaces can be obtained.

This ideal situation, however, does not apply to all process calculi. In the case of
named calculi, in particular, infinite-state transition systems are generated instead, also

M. Bernardo and A. Bogliolo (Eds.): SFM-Moby 2005, LNCS 3465, pp. 1-28, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

2 U. Montanari and M. Pistore

by very simple processes. In a named calculus, the observations labelling the transi-
tions of a system may contain names which are used to identify different features of
the modeled system, such as the communication channels, the agents participating to
the system, or the locations describing the spatial structure of the system. A quite in-
teresting example of named calculus is m-calculus [MPW92, Mil93]. It has the ability
of sending channel names as messages and thus of dynamically reconfiguring process
acquaintances. More importantly, 7-calculus names can model objects (in the sense
of object oriented programming [Wal95]) and name sending thus models higher order
communication and mobile code [San93b].

The operational semantics of 7-calculus is given via a labelled transition system.
However labelled transition systems are not fully adequate to deal with the peculiar
features of the calculus and complications occur in the creation of new channels. Con-
sider process p = (vy) Zy.y(z).0. Channel y is initially a local channel for the process
(prefix (vy) - is the operator for scope restriction) and no global communication can
occur on it. Action Zy, however, which corresponds to the output of name y on the
global channel z, makes name y known also outside the process; after the output has
taken place, channel y can be used for further communications, and, in fact, y is used
in y(2).0 as the channel for an input transition: so the communication of a restricted
name creates a new public channel for the process. The creation of this new channel is
represented in the ordinary semantics of the m-calculus by means of an infinite bunch
of transitions of the form p =) w(z).0, where w is any name that is not already in use
(i.e., w # x in our example, since z is the only name in use by p; notice that w = y
is just a particular case). This way to represent the creation of new names has some
disadvantages: first of all, also very simple 7-calculus processes, like p, give rise to
infinite-state and infinite-branching transition systems. Moreover, equivalent processes
do not necessarily have the same sets of channel names; so, there are processes q equiv-
alent to p which cannot use y as the name for the newly created channel. Special rules
are needed in the definition of bisimulation to take care of this problem and, as a con-
sequence, standard theories and algorithms do not apply to 7-calculus.

The ideal situation of ordinary automata can (at least in part) be recovered also in the
field of named calculi, by introducing a new operational model which is adequate to deal
with these languages, and by extending to this new model (part of) the classical theory
for ordinary automata. As model we propose the history-dependent automata (HD-
automata in brief). As ordinary automata, they are composed of states and of transitions
between states. To deal with the peculiar problems of named calculi, however, states and
transitions are enriched with sets of local names: in particular, each transition can refer
to the names associated to its source state but can also generate new names, which can
then appear in the destination state. In this manner, the names are not global and static,
as in ordinary labelled transition systems, but they are explicitly represented within
states and transitions and can be dynamically created.

This explicit representation of names permits an adequate representation of the be-
havior of named processes. In particular, 7-calculus processes can be translated into
HD-automata and a first sign of the adequacy of HD-automata for dealing with -
calculus is that a large class of finitary m-calculus processes can be represented by finite-
state HD-automata. We also give a general definition of bisimulation for HD-automata.

History-Dependent Automata: An Introduction 3

An important result is that this general bisimulation equates the HD-automata obtained
from two m-calculus processes if and only if the processes are bisimilar according to the
ordinary 7-calculus bisimilarity relation. The most interesting result on HD-automata is
that they can be minimized. It is possible to associate to each HD-automaton a minimal
realization, namely a minimal HD-automaton that is bisimilar to the initial one. As in
the case of ordinary automata, this possibility is important from a theoretical but also
from a practical point of view.

In this paper we give an introduction to HD-automata. Some of the basic results on
ordinary automata and an overview of the 7-calculus are briefly presented in Section 2.
Section 3 introduces HD-automata, defines bisimulation on HD-automata, and presents
the translation of m-calculus processes to HD-automata. Section 4 describes how HD-
automata can be minimized by taking into account symmetries on the names enriching
states and transitions. Finally, in Section 5 we propose some concluding remarks. Fur-
ther results on HD-automata (as well as the proofs of the results that we present in this
paper) can be found in [MP98b, MP98a, MP99, MPO0O0].

2 Background

2.1 Ordinary Automata

Automata have been defined in a large variety of manners. We choose the following
definition since it is very natural and since, as we will see, it can be easily modified to
define HD-automata.

Definition 1 (ordinary automata). An automaton A is defined by:

— a set L of labels;

— a set () of states;

— aset T of transitions;

— two functions s,d : T — Q that associate a source and a destination state to each
transition; .

- a function o : T — L which associates a label to each transition;

— an initial state ¢y € Q.

Given a transitiont € T, we write t : ¢ —— q ifs(t) =q d(t) =q and o(t) = 1.

Notation 2. 7o represent the components of an automaton we will use the name of the
automaton as subscript; so, for instance, Qp are the states of automaton B and dg is
its destination function. In the case of automaton A, we will simply write Q. and d,,
rather than Q) 5, and d 4,. Moreover, the subscripts are omitted whenever there is no
ambiguity on the referred automaton.

Similar notations are also used for the other structures we define in the paper.

Often labelled transition systems are used as operational models in concurrency.
The difference with respect to automata is that in a labelled transition system no initial
state is specified. An automaton describes the behavior of a single system, and hence the
initial state of the automaton corresponds to the starting point of the system; a labelled

4 U. Montanari and M. Pistore

transition system is used to represent the operational semantics of a whole concurrent
formalism, and hence an initial state cannot be defined.

Various notions of behavioral preorders and equivalences have been defined on au-
tomata. The most important equivalence is bisimulation equivalence [Par80, Mil89].

Definition 3 (bisimulation on automata). Let A; and A, be two automata on the
same set L of labels. A relation R C Q1 X Q2 is a simulation for A; and A; if g1 R q2
implies:

G l . e l
Sor all transitions t1 : g1 — q} of A, there is some transition to : g3 — a5
of Az such that ¢f R ¢b.

A relation R C Q1 X Q2 is a bisimulation for A; and A, if both R and R~ are
simulations.

Two automata Ay and Ay on the same set of labels are bisimilar, written A; ~ Ay, if
there is some bisimulation R for A; and Az such that qo; R qoz.

An important result in the theory of automata in concurrency is the existence of
minimal representatives in the classes of bisimilar automata. Given an automaton, a re-
duced automaton is obtained by collapsing each class of equivalent states into a single
state (and similarly for the transitions). This reduced automaton is bisimilar to the start-
ing one, and any further collapse of states would lead to a non-bisimilar automaton. The
reduced automaton is hence “minimal”. Moreover, the same minimal automaton (up to
isomorphisms) is obtained from bisimilar automata: thus it can be used as a canonical
representative of the whole class of bisimilar automata.

In the definition below we denote with [g]% , the class of equivalence of state g with
respect to the largest bisimulation equivalence R 4 on automaton .A. With a light abuse
of notation, we denote with [t]z , the class of equivalent of transition ¢, where

t1 Raty iff S(t1> R4 s(ta), d(tl) Ra d(tg) and O(tl) = O(tg).

Definition 4 (minimal automata). The minimal automaton A,,;, corresponding to au-
tomaton A is defined as follows:

= Lnin =L;

= Qmin = {[g)r4 | 7 € Q} and Tnin = {[t]r, |t € T},
- smin([t]RA) = [S(t)]RA and dmin([t]RA) = [d(t)JRA;
= omin([t]r.4) = o(t);

= QOmin = [qO]RA'

2.2 The w-Calculus

In this section we describe the 7-calculus [MPW92, Mil93], a process calculus in which
channel names can be used as values in the communications, i.e., channels are first-
order values. This possibility of communicating names gives to the 7-calculus a rich
expressive power: in fact it allows to generate dynamically new channels and to change
the interconnection structure of the processes. The m-calculus has been successfully

History-Dependent Automata: An Introduction 5

used to model object oriented languages [Wal95], and also higher-order communica-
tions can be easily encoded in the 7-calculus [San93a], thus allowing for code migra-
tion.

Many versions of m-calculus have appeared in the literature. For simplicity, we con-
sider only the monadic m-calculus, and we concentrate on the ground variant of its
semantics.

Let \V be an infinite, denumerable set of names, ranged over by a,b,...y,z...,
and let Var be a finite set of process identifiers, denoted by A, B, .. .; the 7-calculus
(monadic) processes, ranged over by p, g, . . ., are defined by the syntax:

pu=10 ' m.p ‘ plp ’ p+p I (va)p l Al s o)

where the prefixes 7 are defined by the syntax:
T E= A I Zy ‘ z(y).

The occurrences of y in z(y).p and (vy) p are bound; free and bound names of process
p are defined as usual and we denote them with fn(p) and bn(p) respectively. For each

identifier A there is a definition A(yy, ..., y,) o pa (with y; all distinct and fn(p4) C
{y1,...,yn}); we assume that, whenever A is used, its arity n is respected. Finally we
require that each process identifier in p4 is in the scope of a prefix (guarded recursion).

Some comments on the syntax of 7-calculus are now in order. As usual, O is the
terminated process. In process 7.p the prefix 7 defines an action to execute before D
is activated. The prefix 7.p describes an internal (invisible) action of the process. The
output prefix Zy.p specifies the channel z for the communication and the value y that
is sent on z. In the input prefixes z(y).p, name z represents the channel, whereas yis
a formal variable: its occurrences in p are instantiated with the received value. Process
plq is the parallel composition with synchronization of p and g, whereas p+q is the
nondeterministic choice. Process (vz) p restricts the possible interactions of process p,
disabling communications on channel z.

We use 0, p to range over name substitutions, and we denote with {Y1/z; - - - Ynjr,}
the substitution that maps z; into y; for i = 1,...,n and that is the identity on the
other names.

We now introduce a structural congruence of m-calculus processes. This structural
congruence allows us to identify all the processes which represent essentially the same
system and which differ just for syntactical details. The structural congruence = is the
smallest congruence which respects the following equivalences

(alpha) (vz)p = (vy) (p{Y/x}) if y does not appear in p
(sum) p+0=p ptg=gq+p pt+(g+r) = (p+q)+r
(par) pl0=p plg=gqlp pl(glr) = (plo)|r
(res) (vz)0=0 (vz) (vy)p = (vy) (vz) p

(vz) (plq) = p|(vz) q if = does not appear in p

The structural congruence is useful in practice to obtain finite state representations for
classes of processes. It can be used to garbage-collect terminated component — by

6 U. Montanari and M. Pistore

exploiting rule p|0 = p — and unused restrictions — by using the rules above, if o does
not appear in p then (va) p = p: in fact, (vz) p = (vz) (p|0) = p|(vz) 0 = p|0 = p.

By exploiting the structural congruence =, each 7-calculus process can be seen as a
set of sequential processes that act in parallel, sharing a set of channels, some of which
are global (unrestricted) while some other are local (restricted). Each sequential process
is represented by a term of the form

s = Tm.p ‘ p+p I Az, ..., x,)

that can be considered as a “program” describing all the possible behaviors of the se-
quential process.

The ground semantics of the m-calculus is the simplest operational semantics that
can be defined for this language. It differs from other semantics, such as the early and
late semantics, in the management of input transitions [MPW93]. According to the early
semantics, process z(y).p can perform a whole bunch of input transitions

z(y).p = p{*y}

corresponding to the different names z that the environment can send to the process to
instantiate the formal input parameter y. In the ground semantics, instantiation of the
input parameters are not taken into account, and process z(y).p can perform only one
input transition:
z(y)
z(y)-p — p.

Ground bisimilarity is easy to check!. However, it is less discriminating than early
bisimilarity, and does not capture the possibility for the environment of communicating
an already existing name during an input transition of a process. For instance,

z(y).(9y.0|z(w).0) and z(y).(gy.2(w).0 + z(w).7y.0)
are not equivalent according to the early semantics, since, performing input xz we ob-
tain
22.0|z(w).0 and §y.z(w).0 + z(w).5y.0

and a synchronization (i.e., a 7 transition) is possible in the first process but not in the
second. However,

£(y)-(7y.0|2(w).0) and 2(y).(Fy.2(w).0 + 2(w).gy.0)

are equivalent according to the ground semantics since the reception of the already
existing name z is not allowed. For simplicity, in this paper we consider only the
ground semantics. The presented results, however, can easily be extended to the other
m-calculus semantics.

The ground actions that a process can perform are defined by the following syntax:

pou=T ‘ z(y) | Ty ‘ Z(y)
and are called respectively synchronization, input, free output and bound output actions.

!'...and, as we will see, easy to model with HD-automata.

History-Dependent Automata: An Introduction 7

Table 1. Free and bound names of 7-calculus actions

#_||fn(p) [bn(p)| n(x)
T 1]] 0

z(y)|| {z} | {v} |{z,9}
zy |{z,y}| 0 |{z,vy}
zZ)| {=} | {y} {=,v}

Table 2. Ground operational semantics of 7-calculus

R
[PREF] 7.p > p [sum] —PL—2P _
pi+p2 — p

Ty z(z) 4 1% /
[comm] 22 — p1 /P2 /—' P2 [PAR] -._&_M;E’l_ if bn(u) N fn(p2) = 0
p1lp2 — p1l(p2{Y/z}) p1lp2 = pilp2

_ii) / ?(—y)> / M /
[OPEN] - ifey foLosg] £A—2 11 P2 P2
Z(y) / /
(vy)p — 7' pilp2 — (vy) (p1|p2)
H /
[RES] P——p ifz ¢ n(u)

(va)p - (va)p'

7
[IDE] pa{¥z1-- Y /xni—jp if Az, ..., 2n) ciépr
A(Y1,-- -, Yn) —— P

The free names, bound names and names of an action p, respectively written fn(u),
bn(u) and n(u), are defined as in Table 1.
The transitions for the ground operational semantics are defined by the axiom

schemata and the inference rules of Table 2. We remind that rule
= p/ p/ =Hy p// p// = p//

pr//

1s implicitly assumed.

Notice that the actions a 7-calculus process can perform are different from the pre-
fixes. This happens due to the bound output actions. These actions are specific of the
m-calculus; they represent the communication of a name that was previously restricted,
Le., it corresponds to the generation of a new channel between the process and the
environment: this phenomenon is called name extrusion.

Now we present the definition of the ground bisimulation for the 7-calculus.

Definition 5 (ground bisimulation). A relation R over processes is an ground simu-
lation if whenever p R q then:

for each p > p’ with bn(u) N fn(plq) = O there is some ¢ - ¢’ such that
PRYq.

A relation R is an ground bisimulation if both R and R~" are ground simulations.

8 U. Montanari and M. Pistore

Two processes p and q are ground bisimilar, written p ~g q, if p R q for some
ground bisimulation R.

In the definition above, clause “bn(u) N fn(plg) = @ is necessary to guarantee
that the name, that is chosen to represent the newly created channel in a bound output
transition, is fresh for both the processes. This clause is necessary since equivalent
processes may have different sets of free names.

As for other process calculi, a labelled transition system is used to give an oper-
ational semantics to the w-calculus. However, this way to present the operational se-
mantics has some disadvantages. Consider process ¢ = (vy) Zy.y(2).0. It is able to
generate a new channel by communicating name y in a bound output. The creation of
a new name is represented in the transition system by means of an infinite bunch of

transitions ¢ i w(z).0, where, in this case, w is any name different from z: the
creation of a new channel is modeled by using all the names which are not already in
use to represent it. As a consequence, the definition of bisimulation is not the ordinary
one: in general two bisimilar process can have different sets free names, and the clause
“bn(u) N fn(plq) = @” has to be added in Definition 5 to deal with those bound output
transitions which use a name that is used only in one of the two processes. The presence
of this clause makes it difficult to reuse standard theory and algorithms for bisimulation
on the 7-calculus — see for instance [Dam97].

3 History-Dependent Automata

Ordinary automata are successful basic process calculi like CCS. For more sophisti-
cated calculi, however, they are not: in fact, they are not able to capture the particular
structures of these languages, that is represented in ordinary automata only in an im-
plicit way. As a consequence, infinite-state automata are often obtained also for very
simple programs. To model these languages, it is convenient to enrich states and labels
with (part of) the information of the programs, so that the particular structures manip-
ulated by the languages are represented explicitly. These enriched automata are hence
more adherent to the languages than ordinary automata.

Different classes of enriched automata can be defined by changing the kind of ad-
ditional information. Here we focus on a simple form of enriched automata. They are
able to manipulate generic “resources”: a resource can be allocated, used, and finally
released. At this very abstract level, resources can be represented by names: the allo-
cation of a resource is modeled by the generation of a fresh name, that is then used to
refer to the resource; since we do not assume any specific operation on resources, the
usage of a resource in a transition is modeled by observing the corresponding name in
the label; finally, a resource is (implicitly) deallocated when the corresponding name is
no more referenced.

We call this class of enriched automata History-Dependent Automata, or HD-au-
tomata in brief. In fact, the usage of names described above can be considered a way to
express dependencies between the transitions of the automaton; a transition that uses a
name depends on the past transition that generated that name.

