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Two kinds of processes occur in the design and operation of chemical
engineering equipment: (a) equilibrium processes, those in which
the properties and conditions do not change with time, of which a
prominent instance is the equilibrium stage of separating equipment;
and (b) dynamic or rate processes, in which properties and conditions
may change with time, or in which any property or condition is
affected by variations in other properties or conditions. This book
deals with major rate processes of interest to chemical engineers,
mainly thermodynamics, mass transfer, heat transfer, fluid flow,
chemical reactions, and automatic control. Full development of these
topics, of course, is neither possible nor desirable here, and attention
is restricted primarily to the differential equations that occur there.

Many physical laws are formulated as rate processes, from New-
ton’s second law of motion and the law of mass action on. Mathema-
tically, rates are represented by derivatives. Mathematical relations
between derivatives and other functions constitute differential equa-
tions. Such equations are solved by eliminating derivatives from
them.

To start, this books tells how to solve the main types of differ-
ential equations that occur in practice. Emphasis is placed early on
numerical and approximate methods of solution, because the bulk
of nontrivial problems have to be solved that way. To make way for
the many desirable topics, the theoretical basis has had to be
skimped, and preference has been given to detailed applications
of methods of solution. For supplementary material on theoretical
background and even for additional exercises, the reader is advised to
consult conventional textbooks. The problems for the reader include
some purely mathematical exercises, but the main emphasis is on
problems of an engineering nature. Space and time are always short.
The engineer who tries to learn everything that is known about a
topic nowadays will have no time to solve his or her own problems.

After the mathematics of differential equations has been pre-

Preface

sented, a chapter is devoted to the principles of the mathematical
formulation of engineering processes. Then follows the distinctive
part of this book, which consists of derivations and solutions of
differential equations in some of the major disciplines of chemical
engineering. Many of the topics are reinforced by mathematical or
numerical examples as well as problems for the reader, mostly with
answers.

Little mathematics beyond calculus is expected of the reader.
Computer usage by the examples and problems is restricted to readily
available user-friendly PC diskettes, and essentially no individual
programming is employed. The book should be accessible to third-
or fourth-year undergraduates and possibly accessible to graduate
students. Also, it should be of interest to professional engineers who
have forgotten some of their schoolwork and wish to review or
possibly extend some of it.

Although the applications are important to chemical engineers,
many of them also should interest other engineers. The purely mathe-
matical aspect of the book likewise should have a wider appeal.

Throughout my long industrial and academic career, I have been
concerned with applied mathematics. Now I have found time to
assemble this material partly for my own satisfaction, but I would
like it to be of interest and perhaps of value to students and other
engineers. It has had to be prepared without immediate student
participation and thus has missed that baptism by fire. Several re-
viewers made helpful suggestions on the manuscript. Many of the
figures were computer drawn by Said Saim, H.W. Kroeger, Dr. C.S.
McCool, and Dr. M.J. Michnik also assisted with computerization.
Professor Alkis Constantinides of Rutgers University graciously sup-
plied improvements of his valuable diskette on numerical methods.
Appreciation is due particularly to Dr. Reza Shams for his computer
expertise and to Dr. Riyaz Kharrat for his mathematical advice, as
well as for their faithful monitoring of the progress of the book —
when is it going to be finished?
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DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS

ifferential equations are relations between
several variables and their mathematical
derivatives, for example,

They may arise out of physical laws that are
expressed in terms of rates or as relations between
forces, masses, and accelerations. Geometric relations
between slopes and curvatures also may lead to

dy . ) differential equations of importance in engineering. For
1. A T 5  first-order ordinary illustration, a number of relatively simple equations are
dy dy derived in Example 1.1.
2. o2 +3 e +2y=0  second-order The tasks addressed in this book are both the
3. %y 4 =13 linear fqrmulat/on a'nd tlze solution of differentia_/ equations that
4. y"+ 20" +y' = cos x T TR - simulate e.ng/ne'er/ng prol?/ems. For pract/ca! reasons, a
5. (y"P + (y)? + 3y = x° sorpnd-degres ronlimss mathe.mat/ca/ SImuI_at/on is sought from which
4 . meaningful conclusions can be drawn yet one that is not
6. —=z+x— first-order partial so complex that numerical results cannot be drawn in the
ax ay available time with the available equipment.
%z Pz, .
7. — +——=x"+y  second-order partial
ox ay
Example 1.1 part (b). The material balance is
Differential Equations Originating in Some Physical Prob-
lems dc
(a) Dibromsuccinic acid decomposes in hot water at a rate E =k(C.-C) - FC

that is proportional to its concentration, that is, —dC/dt = kC.

(b) A tank of volume V contains brine of concentration Co.
Fresh water is pumped in at a rate F, and solution overflows
at the same rate. The solution is well stirred, so the effluent
concentration is the same as that in the tank. Therefore,
-V dC/dt = FC, with C = Co, when t= 0.

(c) The motion of an object sliding on a horizontal surface
is retarded by friction that is proportional to the velocity, Fr=
k dx/dt. A constant force F, is impressed. By Newton’s second
law, the force balance is

2
Fo— k%X o OX
at | dt

(d) Water evaporates from the surface of a porous material
at a rate dW/dt that is proportional to the difference between
the saturation humidity Hs and existing humidity A of the air.
The humidity is the weight of moisture per unit volume. The
room has a volume V. The material balance is

H=H0+M
v

Accordingly, the rate of drying is

aw
~ S = k(He — H) = k(Hy — Ho —
dt ( ) (s 0

W, — W)

v

(e) The bottom of a tank is covered with a layer of solid
salt that dissolves at a rate that is proportional to the difference

Cs — C between the saturation and existing concentrations. The
tank is stirred, and fresh water is pumped into the tank as in

(f) A crystal of K,Cr,0, falls through a column of pure
water. Its velocity is given by Stokes’s law as dx/dt = k,R?,
where R is its radius. The rate of solution is proportional to the
velocity. Putting it all together,

3
_d@TRY3) | dx o
dt dt

(g) By Newton’s law, a body cools in air at a rate pro-
portional to the difference in temperature, 7 — T, but the pro-
portionality factor in still air varies as the 0.25 power of the
temperature difference. Thus the relation becomes

daT
- ===k T-Tir 1.25
dt ( aic
(h) A reacting system has the stoichiometric form

2A — B — C. Substance A changes into B at a rate that is pro-
portional to the square of its concentration. The balances on
substances A and B are as follows, where the first equation
is solved and substituted into the second to make it directly
integrable.

_ﬁzkvz‘z, A=4A°
dt 1+ kAot
2
A
9B A - koB = ko (—°> - kB
dt 1+ kiAot

(i) At each point (x, y) of a curve, the slope of the tangent
equals the product of the abscissa and ordinate, that is,
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dy
W _ 5
dx 4

which has the solution y = Ce**/2.

() The family of circles of fixed radius r with centers on
the x axis has the equation

x—C?+y*=r?

where C is an arbitrary constant. Elimination of C by differenti-
ation leads to the differential equation of this family of curves,

2,
dy)
2LEXY 4op2 = g2
y(dx y =F

1.1. CLASSIFICATION, DEFINITIONS,
AND CONCEPTS

An ordinary differential equation (ODE) involves functions and de-
rivatives of only two variables, one independent and one dependent.
Three kinds of symbols are used to designate the derivatives, as in
these forms of the same equation:

d’y  dy
y v
dx? ¥ dx

Y+ xyy +y' = flx,y)

D% + xyDy + y* = f(x, )

+y* = flx,y)

A partial differential equation (PDE) involves partial derivatives
of one or more dependent variables with respect to more than one
independent variable and functions of some or all of the variables.

The order of a differential equation is the order of the highest
derivative. The equation d’y/dx® + (dy/dx)* + xy = 0 is of the third
order.

A linear differential equation does not have powers or products
of the dependent variables and their derivatives. The general linear
ODE of the nth order is =0 f,,(x) d"y/dx" = 0. All other ODEs are
nonlinear.

The degree of an equation that can be written as a polynomial
in the dependent variable and its derivatives is the highest expon-
ent on the highest derivative. The equation (d’y/dx?)’ + f(x,y)
(dy/dx)* + g(x,y) = 0 is of the third degree. Just as algebraic equa-
tions of high degree have multiple roots, differential equations of
high degree have multiple solutions.

The solution of an ODE of the nth order,

d d"
F(x,y,ay,,..,;{>=0

has n arbitrary constants and can be written

f(x’yacl,-~~ 1Cn)=0

or explicitly as
y=fx, Cis:005C)

In specific cases, the constants C; can be evaluated by imposing »
conditions on the dependent variable or its derivatives. Conditions
are of two kinds, initial value or one-point conditions, and boundary
value or multiple-point conditions.

In initial value problems, values of the dependent variable and
n — 1 derivatives are specified at a point x,. For example, the equa-
tion d’y/dx* +y =0 has the solution y = C;sinx + C,cosx. The
constants C; and C; can be evaluated when y, and yo are specified
at xy, by solving the two equations

Yyo=Cysinxg+ Crcosxo and yb= C;cosxo— C,sin x

In boundary value problems, the n values of the dependent vari-
able or its derivatives are specified at more than one point. Such
problems do not always have unique solutions and may, in fact, have
no solution. Example 2.8 illustrates this point. In practical problems,
care must be taken to make multiple-point conditions compatible
with each other.

Unigq s of Solutions. The solution of a differential equation
y" = f(x,y) is unique at a point (xo, yo) if the function is continuous
and its derivative 8f/dy is bounded (Cauchy’s existence theorem).
Geometrically this means that only one integral curve passes through
(%0, y0). The points of a region at which the uniqueness of a solution
is violated are called singular points; at such points, zero, one, or
multiple solutions may exist. Example 1.2 examines some cases.

Singular solutions are those that cannot be obtained by assigning
particular values to the integration constants of a general solution.
Usually they are associated with nonlinear differential equations.
Envelopes, for instance, have every point coincident with a point of
each member of a family of curves representing the general solution.
Example 1.3 considers a number of such cases.

Example 1.2

Domain of Existence and Uniqueness of Solutions

(a) The equation dy/dx = x(1 — y?)"? = f(x, y) has the de-
rivative af/dy = —xy/(1 — y?)"’?, which is bounded by |y|=1.
Moreover, the function fitself is continuous over |y| = 1. Conse-
quently, the differential equation has a unique solution in any
strip —1<y<1.

(b) For the equation dy/dx = f(x, y) = x* — y?, the valid do-
main is the entire xy plane, because f is continuous everywhere
and the derivative df/dx = —2y is not bounded.

(c) For the equation dy/dx = y/(y — x) = f(x, y), the deriva-
tive is 9f/ax = —x/(y — x). At y = x, the function fis not continu-
ous, and its derivative is unbounded, so the solution of the
differential equation is not necessarily unique at that location.

(d) Table 2.4 gives several examples of the behavior of
integral curves in the vicinity of singular points.

(e) In Example 1.3(b), the domain of existence of the solu-
tion is between the lines y = x and y = —x on the xy plane.

(f) In Figures 1.1c and 1.1f, the domains of existence are
limited to portions of the xy plane.
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Example 1.3

Envelopes as Singular Solutions

(a) The differential equation is y = xy’ — (y')?/4, and its so-
lution is y = Cx — C?/4, a family of straight lines. The envelope
y = x? also is a solution of the differential equation but is not
included in the general solution.

(b) The solution of a differential equation is y? = 2Cx + C?,
a family of parabolas. The derivative is dy/dC = (x — C)ly =0.
Eliminating C gives y = x or y = —x, which are two straight
lines, as the envelopes of the family of parabolas. Figure (b)
represents this system.

(a)

YA

(c) (d)

(c) The differential equation is 2y(y’ + 2) = x(y’)?, whose
general solution is y = (C — x)?/C. The straight lines y = 0 and
y = —4x are the envelopes.

(d) The differential equation is (y’)? = 4x2, with general so-
lution y =x*+ C and y = —x*+ C, two families of parabolas.
The straight line with equation x = 0 is the taclocus of the inte-
gral curves.

(e} For the differential equation (y')?(2 — 3y)? =4(1 — y),
the integral is y(1 — y) = (x — C). The equation of the envelope
is y =1, that of the taclocus is y = §, and that of the locus of
nodes is y = 0.

(b)
J
1 Envelope
X £ % N "\ Taclocus
§
Locus
7 of nodes "y
(e)

Geometrical Interpretation of a Differential Equation. The first-
order differential equation represents a direction field on the xy
plane. A solution is represented by a curve going through point
(¥0, yo) and following the direction field. This concept is illustrated
in Figure 1.1a. Other parts of this figure show plots of solutions of

several differential equations. Each curve corresponds to a particular
value of an integration constant C. In parts (b), (c), and (e), every
point in the plane has some curve passing through it; in part (d),
only the region corresponding to the positive y axis is covered; and
in part (f) the region covered with curves is a narrow strip.
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Figure 1.1. Direction fields and families of curves defined by differential equations. (a) Direction field and integral curves defined by dy/dx =
x + y, with the integral y = x — 1 + Ce”; a curve passes through every point of the plane. (b) Family of curves defined by dy/dx = cos x, with
integral y = sinx + C; the whole plane is covered. (c) The equation dy/dx = 2x has the integral y = x> + C; a curve through any point in the
plane is determined by the value of the integration constant C. (d) A family of curves defined by dy/dx + 2xy = 0 with the integral y =
Cexp(—x?); only the positive y plane is covered. (¢) Family of curves defined by dy/dx + 2y = 3¢*, with integral y = e* + Ce~%*; the whole

plane is covered. (f) Family of circles defined by dy/dx = (a®> — y*)"?/y, with integral (x — C)* + y? = 4*, occupying a band of width 2a = 2

1.2, METHOD OF ISOCLINES

An isocline is the locus of a function, f(x, y, y’ = ¢) = 0, at a constant
value of the derivative y’ = dy/dx. The equation of the locus can be
written y = f(x, yfiea). A field of closely spaced isoclines can be
used in the construction of an integral curve of the equation. Start
at a particular point (xo, yo), proceed in the direction corresponding
to the isocline through that point to the neighboring isocline, change

direction there, and so on. This is a feasible method of integration
of a differential equation only if the isoclines can be constructed
easily, such as the straight lines of Figure 1.2a or the circles of Figure
1.2b; the trigonometric isoclines of Figure 1.2c may be considered
impractical.

Other graphical methods of drawing integral curves are de-
scribed in the older literature —for example, by Willers (1948) and by



