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EDITOR’S PREFACE

With the present publication of Projective Geometry, the project of
translating the famous German-language textbook Ewnfuhrung in dic
analytische Geometric und Algebra, by Otto Schreier and Emanuel
Sperner, originally published in two volumes, is now complete. As is
well known, the purpose of that textbook was to offer a course in Algebra
and Analytic Geometry which, when supplemented with a course on the
Calculus, would give the student all he needs for a profitable continua-
tion of his studies in modern mathematies. The Preface to the German
Edition (see below) gives a more detailed description of the two volumes.

The only change that has been made has been to divide the two volumes
somewhat differently in order that they might be usable independently.
The first volume and the early part 6f the second volume were combined
into a single book under the title Introduction to Modern Algebra and
Matrix Theory. The balance, consisting of the major portion of the
second volume is published herewith as Projective Geometry of n Dinicn-
stons. The titles of the two books indicate their respective contents.

The chief prerequisite for reading the present book, aside from a few
elementary facts about affine space and systems of linear equations, is
a knowledge of the elements of matrix theory such as is contained, for
example, in the first four sections of Chapter V (Linear Transformations
and Matrices) of Introdiction to Modern Algebra and Matrix Theory.

Professor Calvin A. Rogers, the translator of the present volume, died
before the preparation of the manuseript for the press was begun. The
numerous questions that always call for consultation between editor and
translator were referred to Professor Abe Shenitzer. whom the Editor
wishes to thank for his very considerable help. The Editor also wishes to
thank Professor F. Steinhardt. The final form of -the manuseript is,
of course, the responsibility of the Editor alone.






FROM THE PREFACE TO THE GERMAN EDITION

Otto Schreier had planned, a few years ago, to have his lectures on
Analytic Geometry and Algebra published in book form. Death over-
took him in Hamburg on June 2, 1929, before he had really begun to
carry out his plan. The task of doing this fell on me, his pupil. I had
at my disposal some sets of lecture notes taken at Schreier’s courses,
as well as a detailed (if not quite complete) syllabus of his course drawn
up at one time by Otto Schreier himself. Since then, I have also given
the course myself, in Hamburg, gaining experience in the process.

In writing this textbook,! which is to be published in two volumes,
I have followed Schreier’s own presentation as closely as possible, so
that it might retain the characteristics impressed on the subject matter
in Otto Schreier’s treatment. In particular, as regards choice and arrange-
ment of material, I have followed Schreier’s outline faithfully, except
for a few changes of minor importance.

This textbook is motivated by the idea of offering the student in
two basic courses on Calculus and Analytic Geometry, all that he needs
for a profitable continuation of his studies in accordance with modern
requirements. It is evident that this implies a stronger emphasis than
has been customary on algebra, in line with the recent dévelopmeuts in
that subject. \ =

The prerequisites for reading this book are few indeed. For the early
parts, a knowledge of the real number system—such as is acquired in
the first few lectures of almost any calculus course—is sufficient. The
later chapters make use of some few theorems on continuity of rea’
functions and on sequences of real numbers. These also will be familiar
to the student from the caleulus. In some sections which give intuitive
interpretations of the subject matter, use is made of some well-known
theorems of elementary geometry, whose derivation on an axiomatic basis
would of course be beyond the scope of this text.

! See the preceding Editor’s Preface.



8 PREFACE TO GERMAN Enmon

What the book contains may be seen in outline by a glance at the
table of contents. The student is urged not to neglect the exercises at
the end of each section; among them will be found many an important
' addltlon to the material presented in the text.

L] L] ]

" The authors earlier book on matrices has been incorporated into
[Chapter V of Introduction to Modern Algebra and Matriz Theory],*
with a few re-arrangements and omissions in order to achieve a more
organic whole. The arrangement of material in this chapter is such that
the first four sections of the chapter contain essentially all that is needed
for [Proyectevc Geometry]. :

e ° °

To Mr. W. Blaschke (Hamburg) I owe a debt of gratitude for his
continuous interest and help. I also wish to thank Messrs. O. Haupt.
(Erlangen) and K. Henke (Hamburg) for many valuable hints and sug-
gestions. In preparing the manusecript, I have had the untiring assistance
of my wife. For reading the proofs I am indebted to Mr. H. Biickner
(Konigsberg) in addition to those named above.

Konigsberg, October 1935
EMANUEL SPERNER

1 8ee the preceding Editor’s Preface.
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CHAPTER I

n-DIMENSIONAL PROJECTIVE SPACE

For certain geometrical questions, whose study is central to this book,
it is advantageous to extend affine (or euclidean) space by adding to it
certain new points, the so-called points at infinity. This procedure is
suggested by quite elementary geometrical facts. For example, in order
to avoid the oftentimes awkward distinction between intersecting and
parallel lines in a plane, we are tempted to aseribe to parallel lines a
point of intersection ‘at infinity.” Another case in point is afforded by
the fact when one line of the affine plane is projected onto another by
means of central projection® this does not in general establish a one-to-
one correspondence between the points of these two lines, whereas it
may be made into such a correspondence by an appropriate adjunction
of points at infinity. The same is true for the central projection of two
planes in space upon each other.

Our immediate task, then, will be to establish and to give a precise
analytic description of the introduction of these points at infinity.

Extension of the Affine Plane to the Projective Plane

Because of its intuitive appeal, we shall start with the two-dimensional

case.
We shall first of all introduce new coordinates in the affine plane

(the so-called homogeneous coordinates). In doing this, we begin with

1 The central projection upon each other of two lines ¢ and h with respect to a
center of projection S is defined by the following rule: P, on g, is taken as the
image of @, on h, and conversely, @ is taken as the image of P, if P, @, and § lie on
a line.

It is therefore clear that P, on g has no image point on h if P.S is parallel to k.
Similarly, @, has no image point on g if Q.S is parallel to g. If we let P, correspond
to one point at infinity on h and @, to one point at infinity on g, then exactly one
point of % 1 .wsociated with each point of g, and conversely



12 PROJECTIVE GEOMETRY OF n DIMENSIONS

linear coordinates and hence take as our starting point a fized linear
coordinate system in the plane. We get in this way a definite one-to-one
correspondence between the points of the plane and the ordered pairs of
real numbers. If a point P has the coordinates =z, z,, we write
P = (1, z,).

Next, we consider all the ordered triples of real numbers (&, &1, &2)
for which £ < 0. These number triples and the points of the plane are
now put into correspondence by means of -the following rule:

P = (21, ) and an ordered triple (&, &1, &2) with &, 5% 0 are to cor-
respond to each other if and only if:

E 7T

It follows immediately from this that to each triple (&, &1, &) there
corresponds only one point, namely, the point with linear coordinates

;—1, % . On the other hand, to each point P = (z;, z2) there correspond
0 0

infinitely many number-triples. For, the point P obviously corresponds
to the triples (&9, &1, £2) and (1§, A&1, A&s) for arbitrary real A £ 0, since

& A&

3 A%

Furthermore, the following holds: If two number-triples (&o, &1, &2)
and (&, &, &) with &, & 540, correspond to the same point, then there

Xy

(i=1,2).

exists a 4540 such that & = 15§;, i =0, 1,-. For from -Lif— == éﬁ

. 0 )

(. =1, 2) it follows immediately that §; = —gi &;. Thus, Eo is the
0 0

desired 4.

Hence, it is also evident that all the triples corresponding to the same
point may be obtained from a given one of them (&, &1, &2) by multiply-
ing it by an arbitrary real A% 0.

In particular, all the triples associated with the point P = (z,, z5)
are of the form (4, iz,, Ax;), since (1, z;, z5) is one particular triple of
this kind.

Since the numbers &; of one of our triples (&, &;, £5) uniquely deter-
mine the corresponding point, we may regard them as the coordinates
of that point. The coordinates introduced with the help of this corre-
spondence are called homogeneous coordinates, or ratio coordinates (since
they are determined only up to a common constant of proportionality).
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Now let P = (z;, z2) be a fixed point in the plane, distinet, however,
from the origin (Fig. 1). If we now set Q = (iz;, Az;) and let 4 vary
from + 1 to + oo, then the point @ moves along the line g determined
by the points O and P (Fig. 1), from P outward to infinity (in the direc-
tion of the arrow).

12 g
Q/
P
Fig. 1.
0] x|
1 .
We can take &, = &y = x,, £, = z, as homogeneous coordinates

for Q. Then as A — o, we have §,—0,5,—z, §;—>2,. We are accord-
ingly led to look upon 0, z;, z, as the homogeneous coordinates of a point
‘at infinity’ (or improper point). It is clear that only the ratio of the
three coordinates is of significance here, for instead of considering the

homogeneous coordinates of @ to be —}1'—, xy, xs, we could equally well

have thought of them as being % ,021,075, with any fixed p (independent

of 4). Upon passing to the limit as 1 — «, we then obtain 0, oy, o2,
as coordinates of the point at infinity of g.

In all of this, the point P = (z;, ;) must be different from the origin.
Hence we can ascribe to the triple (0, 0, 0) neither a point in the finite
part of the plane nor a point at infinity. For this reason, we once and
for all rule out the triple (0,0,0); it shall not designate any point
whatever.

Finally, then, we have the following definition :

Every triple (0, &, &2) in which not both &, and &; vanish 1s called a
point at infinity or, better, an improper point of the plane. Two improper
points (0, &1,&2) and (0, &/, &) are said to be equal (or coincident) when-
ever there exists a A 540 such that §, = Ak, S, =18,

The plane obtained by the adjunction of these improper points is called
the projective plane.

In contradistinction to the improper points, all the points of the pro-
jective plane that can be represented by a coordinate triple (&, &1, &2)
with &, 3£ 0 are called proper points. The totality of proper points is
called, as before, the affine plane.
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We now wish to exténd these definitions still further. To each line
through the origin of the fixed linear coordinate system we have already
assigned a point at infinity. Now, is it desirable to do the same for an
arbitrary line, and how can this be accomplished? In order to decide, let
us first consider the following question: Can the equation of a line be
written in homogeneous coordinates?

In the affine plane a line g can always be represented by an equation
of the form

1) ao+ arxy+ asxs = 0.

That is to say, the totality of points whose linear coordinates z,, z, satisfy
equation (1), fill out a line in the affine plane. Now if P is a proper
point of the line g, with linear coordinates z;, z; and homogeneous co-
ordinates &g, &1, &2, then it follows, by the substitution of

_ &5 &
0= N ’ ? & =
into (1), that &, &1, &2 satisfy the equation
(2) a Sota, E1+as § = 0.

And the converse is also true. If &, &;, &, satisfy equation (2) and
£y 5£ 0, then z, = %, Zy = %— satisfy equation (1); that is to say, the
S0 0
triple (&o, &1, &2) represents a point of g.
Thus, we see that equation (2) is satisfied by all those triples and only
those triples (£o, &1, £2), with &, 5< 0, which represent (proper) points of g.2

The following definition now suggests itself: All those improper
points and only those improper points whose coordinates satisfy (2) shall
belong to g.

How many improper points is that? We claim: Exactly one. For
if (&o, &1, &2) is one such point, then the &; must satisfy the following
equations :

3) ‘ ﬂo§z+ a &+ as §2Z 8;

This is a system of homogeneous equations in the three unknowns,
&, &1, £5. The rank of the matrix of (3) is 2. For, a, and a, cannot both

2 Equation (2) of our line g is homogeneous in the &, and a similar situation
obtains when the equation of any curve is written in terms of these new coordinates;
hence the name ‘homogeneous coordinates,’
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vanish ; else (1) would not represent the equation of a line. According
to § 6 of Modern Algebra,?® the totality of the vector solutions {&o, &1, &2}
of (3) form a one-dimensional linear vector space. That is to say, all the
vector solutions are multiples of a fized one among them. This implies,
however, that all the triples (&, &1, &) that are solutions of (3), with the
exception of (0,0, 0), represent the same point in the projective plane
(and moreover, by virtue of the second equation of (3), an vmproper point).

‘We now ask, conversely: Does every homogeneous equation of the
form (2) represent a line? Up to now we have seen this to be the case
only for such equations of the form (2) as are derivable from an equation
of the form (1). In (1), however, a; and a; must not vanish simultaneously.
Let us now consider the case a; = a; = 0. Then (2) reduces to

(4) Ay §o = 0.

If a9y =20 also, then of course equation (4) no longer represents a line
(since (4) is then satisfied by every point of the plane). Thus, let ag 5% 0.
Then (4) is equivalent to:

§o=0.

That is to say: The points that satisfy (4) are precisely all the points
at infinity.

Now, for the sake of simplicity, we make the following definition.

The totality of all smproper points is called the improper line (or the
-line at infinity).

Thus, we have: Every homogeneous equation (2) in which not all
three coefficients vantish, represents a line.

Now, what can be said about the intersection of two lines conceived
of in this extended sense? Let g and & be two lines, g being given by
equation (2) and h by

(5) bo §o+ b1 §1+ bg Eg = 0.

The points common to g and % satisfy both equations (2) and (5) and
thus are the solutions of the system

8 Introduction to Modern Algebra and Matriz Theory, by O. Schreier and
E. Sperner. See Editor’s Preface to the prha\ent work.



16 ProJecTIVE GEOMETRY OF 7 DIMENSIONS

a So+ 61 &+ as & = 0,
bo So+ by &+ b & = 0.

The matrix of this system of homogeneous linear equations can have

rank 1 or 2.
In the first case, the totality of solutions of (6) is identical with that

of each of (2) or (5) separately, that is, the two lines are identical.

In the second case, the vector solutions {&o, &1, &2} constitute a
one-dimensional linear vector space ; that is, there exists exactly one point
whose homogeneous coordinates satisfy both the equations (6).

We have thus shown that any two distinct lines of the projective plane
intersect in exactly one point.

(6)

Consequently, parallel lines must also intersect in a point. However,
since such lines can have no proper point in common, this point of inter-
section must be an improper point. From the fact that each line has but
one improper point, it follows, in addition, that:

Parallel lines all go through one and the same point at infinity.

On the other hand, non-parallel lines have a finite point of interseec-
tion. Their improper points must therefore necessarily be distinct (since
two lines have only one point of intersection).

In what follows, the definitions that we have adopted for the plane
will be generalized to » dimensions (n > 0 an arbitrary integer).

n-Dimensional Projective Space

We proceed in complete analogy to the two-dimensional case. We
first define homogeneous coordinates in affine Rn by establishing a rela-
tion between the points P = (z1, Zs, . . ., Zn) of affine Bn and the ordered
(n + 1)-tuples (%o, &1, . . ., &n) of real numbers in which &, 5% 0. This we
do in accordance with the following rule.

P = (zy,2s,...,2n) and (&, &1, ..., &n) shall be said to correspond if

and only if 2, — — for all i==1,2,...,n.
(1]

According to this rule, we see that, precisely as in the two-dimensional
case, just one point of R, corresponds to each (n + 1)-tuple (%o, &1, . . . , &n)
with §05£0. Furthermore, two (n+ 1)-tuples (%o, &1,...,&n) and
(&, &4, ..., &) correspond to the same point if and only if there exists a
A5£0 such that 5, = 4&,, &= A&, ..., &= 4§,
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If P = (x4, %2,...,%a) and (&g, &y, ..., &) correspond in accordance
with this rule, then the &; are called the homogeneous coordinates (or
ratio coordinates) of P.

The homogeneous coordinates of a point are determined only up to a
constant of proportionality ; they determine the point, however, uniquely.
Let us now adopt the following notation: If a point P has the homo-
geneous coordinates &, &1, . . ., £, we shall write P = [&, &1,...,Ea].4

Our final step is the adjunction of the improper points. We adjoin
to affine R, the previously excluded (» -+ 1)-tuples [&, &1,...,&n] in
which &, = 0, but in which not all the & vanish simultaneously, and these
(n + 1)-tuples will also be called points; in contradistinetion to the
‘proper’ points that we have been discussing hitherto, we shall call these
new points ‘“emproper’ points (or points ‘at infinity’). Our definition of
equality for the improper points (in analogy to that for the proper points)
will be as follows: P =[0,&, &s,~--, &) and Q = [0, &, &, - - -, &) will
be equal if and only if there exists a As£0 such that & =— 1§; for
1=12,...,n

The extension of affine K. obtained by adjoining the improper points
in this way will be referred to as n-dimensional projective space and
will be denoted by Pa.

We can summarize by saying: Projective P, consists of the totality
of non-trivial® ordered (n + 1)-tuples of real numbers (&, &, -+, $al, where
two such (n + 1)-tuples [&, &, - - -, &]and (&, &, - - -, &,] are said to be
equal (or coincident) if and only if there exists a 4 5= 0 such that & = 2 &
for1=20,1,...,n°

If P = [&y, &1, :.., &a] is a proper point and z; = é’— (t=12,...,n),

. S0
that is, if P = (x1, Zs,..., Za), then we call the z; the affine, or non-
homogeneous, coordinates of P, in contradistinetion to the homogeneous
coordinates &;.

Now, what is to be understood by a linear subspace in P,? In affine
R., a linear subspace of dimension r can always be represented by a system
of linear equations

4+ We have -chosen brackets to avoid confusion with the points of (n 4 1)-dimen-
sional affine space, which we always write in parentheses.

5 We mean by this the (n + 1)-tuples in which not all the & vanish simultaneously.
As in the two-dimensional case, we shall once and for all exclude the trivial’ (n 4 1)-
tuple [0,0,...,0]; it shall not designate any point whatever.

6 The essential difference between projective P and (n + 1)-dimensional affine
E.,., lies in the way in which equality of two points is defined.



