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PREFACE

This volume cemprises the proceedings of the second Symposium on
Nonlinear Semigroups, Partial Differential Equations, and Attractors
held at Howard University in Washington, D.C. on August 3-7, 1987.

The proceedings of the first symposium, held two years earlier, was
published as volume 1248 of this Lecture Notes Series. The present
Symposium was made possible by grant support from the following
funding agencies: U.S. Air Force 0ffice of Scientific Research, U.S.
Army Research Office, U.S. Department of Energy, National Aeronautics
and Space Administration, U.S. National Science Foundation, and the
U.S. Office of Naval Research.

The local support committee consisted of James A. Donaldson
(Howard University), Lawrence C. Evans (University of Maryland), James
Sandefur and Andrew Vogt (Georgetown University), and Michael C. Reed
(Duke University) whom we thank for their helpful advice.

The Symposium brought together a total of 76 distinguished
researchers in the Mathematical, Physical, and Engineering sciences
working on analytical, topological, and numerical aspects of a large
variety of nonlinear partial differential equations. This
multidisciplinary character of the Symposium attendees brought about a
productive exchange of ideas on various approaches to current problems
in applied mathematics.

In the past twenty or so years, there has been an increased
interest in the study of nonlinear models of physical, chemical,

biological, and engineering systems. The evolution of new analytical
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and topological methods for the study of infinite dimensional systems
concurrently with the advent of large-scale computers and efficient
algorithms has served to further stimulate research on problems that
were considered impossible to attack just a few years ago.

There are many problems in the natural sciences which are
naturally formulated in terms of nonlinear partial differential
equations. Over the years, new methods and special techniques have
evolved for the study of nonlinear problems. In addition, there has
been a great deal of recent activity devoted to the study of
stochastic ("chaotic") solutions to nonlinear differential equations
in cases where the "conventional wisdom" physics leads us to believe
that only deterministic solutions exist. Many of these studies have
been numerical and confined to either maps or ordinary differential
equations, which are more easily analyzed than are partial
differential equations. Recently however, various methods have been
developed for the study of partial differential equations which,
because of the complicated nature of these equations, are a valued
addition to the mathematical sciences.

A general method that has been very effective in the treatment of
large classes of nonlinear partial differential equations makes use of
the theory of nonlinear semigroups. Given appropriate conditions,
these semigroups generate solutions to nonlinear evolution equations
which may have a compact global attractor with finite Hausdorff

dimension. This type of analysis applies to numerous nonlinear



partial differential equations. Most of the papers contained in the
present collection are concerned with nonlinear semigroups.

A major contribution to the multidisciplinary character of the
Symposium is the existence of the Large Space Structures Institute at
Howard University. This is a special institute devoted to the study
of physical, engineering, and mathematical problems that arise in the
development of large structures (space-stations) to support life in
space. It is a joint effort of the departments of mathematics and of
electrical, mechanical, and civil engineering. One afternoon session
of the Symposium was devoted to the presentation and general
discussion of new classes of nonlinear problems that model certain
components of these structures. The rationale was to introduce direct
interaction among the symposium participants and some of the research
engineers concerned with analyses of these types of problems. Ve feel
that this interaction among scientists with varying backgrounds and
interests gave the symposium a distinctive flavor and provided a

unique cross-fertilization of ideas.

Tepper L. Gill
V.V. Zachary
Vashington, D.C.
November 1988
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STATE-SPACE FORMULATION FOR FUNCTIONAL DIFFERENTIAL EQUATIONS OF
NEUTRAL-TYPE

John A. Burns*
%3
Terry L. Herdman
Department of Mathematics

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

233
Janos Turi

Department of Mathematical Sciences

Worcester Polytechnic Institute
Worcester, MA 01609

1. INTRODUCTION

In recent years various classes of functional differential
equations (FDE) have been studied in the context of functional
analytic semigroup theory (see e.g. [1], [2], [4]. [10] and the
references therein). The basic approach in this direction is to
establish equivalence between the FDE and an abstract evolution
equation (AEE) in some appropriate state space (i.e. space of initial
data.) Furthermore if the associated AEE is well-posed, then the
equivalence between the FDE and the AEE provides an excellent
framework to study approximation techniques for systems governed by
FDEs. Well-posedness is dependent on the choice of a state-space and
the choice of an appropriate state-space is tied to the particular
application. It was shown (see [1], [2] for retarded and [10], [12]
for neutral functional differential equations) that certain classes of
FDEs can be transformed into well-posed Cauchy problems in the product

spaces Rnpr. The product space model also proved to be very useful
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in investigating a variety of control and identification problems for
problems governed by FDEs ([2]. [3]. [5]. [10]. [12]).
In this paper we extend previous results concerning the well-

posedness of FDEs on the product spaces m“pr. In particular we

develop general necessary and sufficient conditions for the well-
posedness of neutral systems to include non-atomic neutral equations

and certain classes of singular integro-differential equations.

2. WELL-POSEDNESS OF FDEs ON R"xL
- P

We consider the FDE of neutral-type

d
atT Dxt = th + f(t) (1)

with initial data

Dxy(+) = m5 x4(s) = #(s), -r s <O (2)

where D and L are linear R"-valued operators with domains %(D)
and %(L) subspaces of the Lebesgue-measurable R"-valued functions
on [-r,0]. We assume that Wl'p C 9(D) N D(L), (m.e) €

n n n
R pr([—r.O],R )(or shortly R pr). fELp.loc' 1 {p K =,

O {r <o® and n 1is a positive integer.

Define the linear operator « with domain

P(d) = ((n-v)emnpr/wewl'p,Dw = n} (3)

by
d(n.¢) = (Le #) (4)
and consider the AEE

z(t) = dz(t) + (£f(t).0) (5)

with

z(0) = zy = (n.e). (6)

The well-posedness of the FDE (1)-(2) and the AEE (5)-(6) has



been studied extensively ([5]. [10], [13]) assuming various continuity
conditions on L and D. It is known (see [13]) that, if L and D
belong to #(W''P,R™), then the FDE (1)-(2) is well-posed if and only
if the AEE (5)-(6) is well-posed (i.e., if 4 defined by (3)-(4) is

the infinitesimal generator of a Co—semigroup {S(t)}tzo on Rnpr).
It is also known (see [5]) that if « generates a Co—semigroup on
Rnpr. then it is necessary that i) L € a(wl'p.m“) and D €
m(wl'p.m“) and ii) D ¢ E(Lp.mn). Concerning the sufficiency

conditions for the well-posedness of the FDE (1)-(2) it is known that
i*) L € Q(Wl‘p, Rn); ii*), D € %(C.Rn) and D 1is atomic at zero
imply well-posedness, but condition ii*) above is not necessary (see
Remarks 2 and 3).

Remark 1: Observe that if D 1is defined on Wl'p by D¢ = ¢(0)
(i.e., when the FDE is retarded), then L € m(wl'p.mn) is necessary
and sufficient condition for the well-posedness of the FDE (1)-(2),
because D € a(wl'p,m“). D ¢ m(Lp.m“). D has a bounded extension to

C, and D 1is atomic at zero.

Remark 2: Consider the scalar FDE of the form (1) with L¢ = O and
0

D¢ = f ¢(s)|s| ™ @ds; 0 < a < 1. It can be shown (see [5], [9]) that
-T

the FDE is well-posed on Rpr if and only if p < 1/(1-a). This

example demonstrates that: I): L € a(wl'p,m), D€$(W1'p,m) and
DCQ(LP.R) is not sufficient (i.e., consider p = 1/(1l-a)), and II):

LGQ(WI'p.R). DEB(C.R) and D 1is atomic at zero is not necessary
(i.e., consider p < 1/(1-a)) for the well-posedness of the FDE on
RxL_.

P

Remark 3: The authors studied (see [16]) a scalar equation of the
0

form (1) with L¢= 0 and D¢ = [ #(s)]|s| % ds; 0 < a < 1, and
e

established well-posedness of this equation on Rpr for p >

1/(1-a). Since D does not have a bounded extension to C, this
example implies, that D € #(C,R) is not necessary for
well-posedness.

Remark 4: Kappel and Zhang [9] considered the problem (1)-(2) in the
space C([-r,0], R) under the assumptions that D belongs to %(C,R)
and L = 0. They proved that the well-posedness of the FDE (1)-(2) in



the state space C implies that D 1is weakly atomic at zero.

Remark 5: At this point the most general necessary condition for
well-posedness is given in [16] . Assuming only that L € m(wl'p.m“),
De #(W''P.R") and D € (L .R") it was shown that 4 defined by

(3)-(4) is the generator of a Co—semigroup only if the n x n matrix

valued function D(ex.I) = [D(ex.el):D(eA.e H ‘D(ex.en)] exhibits

ST

"certain" asymptotic behavior as A - ®; (A € R).

As the previous Remarks indicate it is not known if there is a
set of conditions on L and D that are both necessary and

sufficient for « to generate a Co—semigroup on R" x Lp'

In the next section we consider a relatively large class of
nonatomic neutral equations (NNFDE)(i.e., D 1is not necessarily
atomic at zero) and give conditions which imply the well-posedness of

these equations on Rnpr for certain values of p.

3. NONATOMIC NEUTRAL EQUATIONS (NNFDEs)

In this section we consider the class of neutral functional
differential equations given by (1)-(2) and provide conditions on D
and L that imply the well-posedness of these equations on the

product spaces Rnpr. Our results extend the results of Burns,

Herdman and Stech [5] in that we obtain the well-posedness of (1)-(2)
without assuming that the operator D be atomic at zero.

Our approach is based on the fact that the FDE (1)-(2) is
well-posed on Rnpr provided that o defined by (3)-(4) is an

infinitesimal generator of a Co—semigroup on Rnpr. Thus, our main
result will establish sufficient conditions on D and L implying
that 4 generates a Co—semigroup on Rnpr. We assume that Wl'p Cc

P(D)NP(L), where the operators L and D satisfy the following

conditions:
(H1) The operator D € a(c.m“) has representation
0]
Do = [ [AdB(s) + au(s)Te(s) (7

=T

where the n x n matrix functions p,B and the nonsingular matrix A



satisfy: i) p 1is of bounded variation on [-r,0], pn(0) =0, n is
left continuous on [-r,0] and lim Var[_e'oju =0; ii) B 1is a

e-0
diagonal matrix and there exists an integer k; O ¢ k ¢ n, such that
the entries, ﬁii' satisfy Bii(s) = - p(-s) for i < k, Bii(s) = =

(-s)l—ai/(l—ai) for i > k, where p:[0,r] > R, p(0) = 0, p(s) =1

for s > 0O and the constants ag i > k, satisfy O < a; < 1; iii)

A has the block matrix form A = diag(All. A22)

are k x k and ¢ x ¢ matrices, respectively, with k + & = n.

where All and A22

(H2) The operator L € m(wl'p.m“) has representation

0]
Lo = Bo(0) + | B(s)e(s)ds (8)

=T

a n xXx n matrix
= L.

where B is a n x n constant matrix and B(+) 1is
valued function having column vectors in Lq‘ E + %
(H3) The n x n matrix valued function a defined on [-r,0] by

s
a(s) = p(s) - Jo B(u)du

has the representation a(s) = [al(s) ! a2(s)]T where ay and a,
are k x n and ¢ x n matrix valued functions, ay is absolutely

continuous and « is of bounded variation on [-r,0].

2

Remark 6: If (H1) holds, then we may assume, without loss of
generality, that A = I. In the event that the original nonsingular
matrix A 1is not the identity matrix, one can multiply (1)-(2) by
A—l. introduce ; = A—l s ﬁ = A_lB. ﬁ(-) = A-IB(-) and reduce the
original problem to the case of A = I.

Remark 7: The operators L and D defined in (H1) and (H2) belong
to Q(Wl'p.Rn). In the case k = n (i.e., & = 0), the operator D

is atomic at zero and the sufficiency result of Burns, Herdman and
Stech [5, Theorem 2.3] yields the well-posedness of (1)-(2) on Rnpr

The case k =0, € =n=1, pu(*) =0, L=0 and f = 0 was also
considered in [5] and well-posedness of (1)-(2) on Rpr was



established for 1 ¢ p < 1/(1-a1).

In Theorem 1 below we establish the well-posedness of a large

class of FDEs (1)-(2) on the product spaces Rnpr for certain values

of p.
Theorem 1: Let a i = min {ai}, 1 ¢(p« 1/(1—amin) and
i>k
n l,p n 5
D€ $(C,R"), L € B(W ., R') have representations (7), (8),
respectively. If conditions H1l) - H3) are satisfied, then the system

t
y(t) = n + Jo (Lx, + f(u))du, t >0

Dxt = y(t) a.e. on [0,®)

with initial condition
xo(s) = ¢(s) a.e. on [-r,0]

has a unique solution y(t) = y(t;n,¢.f), x(t) = x(t;n,¢,f) defined

on [0,®) and [-r,®], respectively such that y(+) 1is continuous

1
(y(*:n.¢.f), x(*:m.e.f)) from Rnpr([O.tl]. Rn) into

and xt(°) € Lp' Moreover, for t., > O the mapping (n,¢.f) -

C([O.tl]. Rn)pr([—r.tl], Rn) is continuous.

Proof: First we note that to prove the theorem it is sufficient to

consider the problem

t
Dx, =71 + J [Lx + f(u)]du a.e. on [0,w)
t 0 u

x(s) = ¢(s) a.e. on [-r,0]. (9)
Using the representations (7) and (8) and changing the order of

integration of the integral involving B(s), (9) becomes

0 0
[ tases) + ausrixcers) - [ BGs)x(ers)as
=T == I
(10)
t

t 0
—BJO x(u)du = n - J B(s)¢(s)ds + Jo f(u)du.

=T



For 0 < t {r we can rewrite (10) as

t
jo [dB(s) + d7(s)Ix(t-s) = (). (11)
where PB(s) = -B(-s). 7(s) = -v(-s). «(s) = a(s) - Bs and
0 t
g(t) =n - J B(s)¢(s)ds + J f(u)du (12)
-F (0]

-t
- | tapts) + da(e) (e + 5

-r

nxn) denotes the

Note that a, v € NBV([0.r].R™™™), where NBV([O.r].R
space of nxn matrix-valued functions which are of bounded variation
on [O,r], right continuous for O < s < r, and take the value O
at s = 0.

Define h(+) € NBV([O0.r].R™™) by h(-:) = [hy 1.

1 {i,j { n, where for all 1 < j {n

;1J(s) i < k,
h”(s) = (13)
sina,m (s a, -1
P i ul JO (s=u) ' 7 ()dul ik

It can be shown (see [15] for details) that for O < t { r, equation

(11) is equivalent to
t —
Jo dB (s) w(t-s) = g(t), (14)
where
t
w(t) = x(t) + J dh(u)x(t-u) . (15)
0

Recall that (15) is a Volterra-Stieltjes integral equation. Our
assumptions guarantee that h € NBV([O.r].Rnxn) and that h is

continuous at 'O from the right, i.e.

lim, h(t) =0 . (16)
t=0



Note that (16) is a sufficient condition (see for example [12]) for
the existence and uniqueness of the fundamental solution,

C € NBV([0.r].R™™), of equation (15) Moreover. if x(-) the
unique solution of (15), then X(+) belongs to Lp([O,r],Rn) and has

representation

t
x(t) = J dC(s)w(t-s). (17)
0
Continuous dependence of x on w with respect to the Lp - norm is an
immediate consequence of (17). In particular, for

0 < tl { r, we have the estimate

{ Var

l h) | |w . 18)
XL (ro.e,1. %) ro.e 1™ ™l (ro.c 3. w) (

Next we consider equation (14) in component form, i.e.

t
Jo dEi(s)wi(t—s) =g, ((t): 1 <1 <. (19)

Using the special form of J(+). equation (19) implies that

wi(t) =g (t) . i<k (20)
and
t -Q
J s 1! w (t-s)ds = g (£) . 1>k . (21)
0

For t €(0,r] define Gi by

t ai_l
Gi(t) = J (t-s) g,(s)ds , 1 >k . (22)
0 i
Note that if (m,¢) € Rnpr . £ € Lp([O.r]. Rn) and

1 ¢ p« 1/(1—amin)' then g4 € Lp([O.r].R). 1 ¢i <k, and Gi

ewl'p([O.r].R). i > k (see [5]., [9] or [15] for details). Therefore,
W the ith component of the unique Lp solution of (14), is given by



gi(t) , for i < k

w(e) = (23)

d sinaiw
E[—"-—' Gi(t)]' for i >k

Moreover, there exists a nonnegative, increasing function

M € C([0,r],R) such that

IIWI'Lp([O,t], Rn) < M(c)lI(n-‘P-f)lI[Rnprpr([o'r]_an) (24)

for t € [0,r] (see[15]). Substituting (23) into (17) we get a

representation for the unique, Lp—solution to (9) for O (¢ t {r.

Continuity of the mapping (m.¢.f) = (y(*:in.e.f).x(*:in.¢.f)) from
m“pr([o.cl].m“) into C([O,tl].Rn)pr([—r.tl],Rn) is an easy

consequence of the estimates (18) and (24) for O < t ¢ r. The

"method of steps” is employed to extend the above results to [0,+®).
8]

As an immediate consequence of Theorem 1 and the equivalence of
the FDE (1)-(2) and the AEE (5)-(6) we have the following sufficiency
result.

Theorem 2: If (H1)-(H3) hold, 1 {( p < 1/(1-a ), and D and L

min
have the representations (7) and (8), then o defined by (3)-(4) is

the infinitesimal generator of a Co—semigroup on Rnpr.

4. CONCLUSIONS:

We have extended earlier results concerning the well-posedness of
FDEs on product spaces. In particular, we have presented sufficient
conditions for the well-posedness of a large class of functional
differential equations (NNFDE). This class contains the "standard”
neutral and retarded functional differential equations and many weakly
singular integro-differential equations. It appears that results in
this paper can be applied to infinite delay problems by using proper

weighting on the state-space.
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