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Foreword

The five articles of this volume evolved from the lecture notes of Swisk', the Sedano
Winter School on K-theory held in Sedano, Spain, during the week January 22-27
of 2007. Lectures were delivered by Paul F. Baum, Carlo Mazza, Ralf Meyer, Marco
Schlichting, Betrand Toén and myself, for a public of 45 participants. The school
was supported by the Ministerio de Educacion y Ciencia and the Proyecto Consoli-
der Mathematica of Spain. Funding to cover expenses of US based participants was
provided by NSF, through a grant to C.A. Weibel, who was responsible, first of all,
for preparing a successful funding application, and then for managing the funds. The
local committee, composed of N. Abad and E. Ellis, were in charge of conference lo-
gistics. Marco Schlichting collaborated in the Scientific Committee. As organizer of
the school and editor of this volume, I am indebted to all these people and institutions
for their support, and to my fellow coauthors for their contributions.

Guillermo Cortifias

" The webpage of the school can be found at http://cms.dm.uba.ar/Members/gcorti/
workgroup.swisk/index_html.html



Preface

This book evolved from the lecture notes of Swisk, the Sedano Winter School on
K-theory held in Sedano, Spain, during the week January 22-27 of 2007. It intends
to be an introduction to K-theory, both algebraic and topological, with emphasis on
their interconnections. While a wide range of topics is covered, an effort has been
made to keep the exposition as elementary and self-contained as possible.

Since its beginning in the celebrated work of Grothendieck on the Riemmann-
Roch theorem, applications of K-theory have been found in a variety of subjects,
including algebraic geometry, number theory, algebraic and geometric topology,
representation theory and geometric and functional analysis. Because of this, mathe-
maticians from each of these areas have become interested in the subject, and they
all look at it from their own perspective. On the one hand, this is the richness and ap-
peal of K-theory. On the other hand, it makes it hard to see a global perspective. For
example it is not often that an algebraic K-theorist, coming, say, from the algebraic
geometry side of the subject, and a topological K-theorist, coming from the func-
tional analysis side, meet together in the same K-theory conference. Thus it is not
uncommon to find that algebraic and topological K-theory are regarded as distinct
subjects altogether. These notes modestly attempt to illustrate current developments
in both branches of the subject, and to emphasize their contacts.

The book is divided into five articles.

The first two are concerned with Kasparov’s bivariant K-theory of C*-algebras
and its role in the Baum—Connes conjecture. If G is a locally compact group and A
and B are two separable C*-algebras equipped with a G-action, the Kasparov biva-
riant K-theory group KKY(A, B) is defined as the homotopy classes of G-equivariant
Hilbert (A, B) bimodules equipped with a suitable Fredholm operator. Kasparov de-
fines an associative product

K%(A,B)® K%(B,C) — K%(A,C)

There is an additive category KKS whose objects are the separable G—C*-algebras,
so that KK®(A,B) = homgyc(A,B) and composition is given by the Kasparov
product. This category is related to usual category G—-C*-Alg of G—C~-algebras and

Vil



VI Preface

equivariant *-homomorphism by means of a functor 1 : G-C*-Alg — KK, The
functor t has the following properties:

e (Stability) If A € G-C*-Alg, and H,,H; are nonzero G-Hilbert spaces, then
(AR K(H)) — A® K(H & H;)) is an isomorphism.

e (Split Exactness) If A L, B Cis a short exact sequence of G—C*-algebras, split
by a G-equivariant homomorphism s : C — B, then (1(j),1(s)) : t(A) & 1(C) —
1(B) is an isomorphism.

Moreover 1 is universal (initial) among stable, split exact functors to additive
categories. Kasparov theory has many other important properties. To mention one,
consider the case when G = {1} is the trivial group, and we take C as the first
variable; then

Ko(B) = KK(C,B)

is the usual Grothendieck group. Because topological K of a C*-algebra B is just Ky
of the suspension of B, we also have

K\ (B) = KK(C,SB)

Thus the whole topological K-theory is recovered from KK, since K'P is 2-periodic.

Another application of equivariant KK is in the definition of equivariant
K-homology, which plays a fundamental role in the Baum—Connes conjecture.
A Hausdorft, locally compact, second countable space X equipped with an action
of G by homeomorphisms is called proper if the map

GxX—-XxX, (g,x) — (gx,x)

is proper, that is, if the inverse image of any compact subspace is compact.
A G-subspace A C X G is called G-compact if it is proper and the quotient G\A
is compact. The equivariant K-homology of a proper G-space X is

K¢(X) = colimKK%(Cy(A).C)
ACX

Here the colimit is taken over all G-compact subspaces A C X; Cy is the C*-algebra

of continous functions vanishing at infinity, and KK (A,C) = KK%(SA,C).

The Baum—Connes conjecture proposes a description of the topological K-theory
of the reduced C*-algebra C,(G) of a locally compact, Hausdorff, second countable
group G in terms of G-equivariant K-homology of the universal (final) proper
G-space. There is a map

K¢ (EG) — K(C/(G))

called the assembly map, and the conjecture says it is an isomorphism. The proper
G-space EG is characterized up to homotopy by the property that any proper
G-space X maps to EG and that any two such maps are homotopic. The redu-
ced C*-algebra is defined as follows. If G is a locally compact, second countable
group, and p is a left invariant Haar measure on G, then one can form the separable
Hilbert space H = L2(G, i) of square-integrable functions on G. The algebra C,(G)
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of compactly supported continuous functions G — C with convolution product is
faithfully represented inside the algebra #(H ) of bounded operators on H, and C,(G)
is the norm completion of C.(G).

The conjecture is known to be true for wide classes of groups; no counte-
rexamples are known. There is also a more general version of the conjecture relating
the equivarient K-homology of EG with coefficients in a separable G—C*-algebra A
with the topological K-theory of the reduced C*-algebra of G with coefficients in
A, C.(G,A). The latter conjecture is also known for large classes of groups, and is
expected to be true in many cases.

The Baum—Connes conjecture is related to a great number of conjectures in func-
tional analysis, algebra, geometry and topology. Most of these conjectures follow
from either the injectivity or the surjectivity of the assembly map. A significant
example is the Novikov conjecture on the homotopy invariance of higher signatures
of closed, connected, oriented, smooth manifolds. This conjecture follows from the
injectivity of the rationalized assembly map.

The first article of this volume, K-theory for group algebras, written by P. Baum
and R. Sanchez-Garcia, introduces the subject step by step, beginning with the de-
finition of a C*-algebra, passing through K-theory of C*-algebras and its connec-
tion with Atiyah—Hirzebruch theory, to the general formulation of the Baum—Connes
conjecture with coefficients, and of Kasparov’s equivariant KK-theory. The latter is
introduced in terms of homotopy classes of Hilbert bimodules.

Universal Coefficient Theorems and assembly maps in KK-theory, by R. Meyer,
looks at KK-theory and the Baum—Connes conjecture from the point of view
of triangulated categories. Equivariant Kasparov theory is introduced using its
universal property, and it is explained how this category can be triangulated.
The Baum—-Connes assembly map is constructed by localising the Kasparov
category at a suitable subcategory. Then a general machinery to construct derived
functors and spectral sequences in triangulated categories is explained. This
produces various generalizations of the Rosenberg—Schochet Universal Coefficient
Theorem.

The next article, Algebraic versus topological K-theory: a friendly match, by
G. Cortifias, attempts to be a bridge between the algebraic and topological branches.
It presents various variants of algebraic K-theory of rings, including Quillen’s,
Karoubi—Villamayor’s, and Weibel’s homotopy algebraic K-theory, denoted respec-
tively K, KV and KH. These variants of algebraic K-theory differ in their behavior
with respect to homotopy and excision. Both KV and KH are invariant under
polynomial homotopy; if A is any ring, we have KV, (A[t]) = KV.(A) and similarly
for KH. On the other hand the identity K, (A) = K, (A[t]) holds in particular cases
(e.g. when A is noetherian regular) but not in general. As to excision, if

0—-A—-B—-C—0
is an exact sequence of (nonunital) rings, then there is a long exact sequence (n € Z)

KH,.\(C) — KH,(A) — KH,(B) — KH,(C)
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A similar sequence holds for KV under the additional assumption that the sequence
be split by a ring homomorphism C — B. The sequence

Ki+1(C) — Ky(A) — Ky(B) — Ky (C)

is exact for n < 0, but not for n > 1, in general. Topological K-theory of
topological algebras also has several variants, essentially depending on the type
of algebras considered. The topological K-thcory of Banach algebras is invariant
under continuous homotopies; that for locally convex algebras is invariant under C”-

homotopies. Both satisfy excision and (when suitably stabilized) Bott periodicity:
o 1
n b= Kno+p2‘
If A is a topological algebra, there is a comparison map

K.(A) = KP(A)

which is not an isomorphism in general.

Cortinas’ article emphasizes the connections —both formal and concrete— bet-
ween the algebraic and topological counterparts. For example, Bott periodicity for
topological K-theory and the fundamental theorem in algebraic K-theory (which
computes the K-groups of the Laurent polynomials) are introduced in a way that
makes it clear that each of them is the counterpart of the other. As a concrete
connection between algebraic and topological K-theory, the question of whether the
comparison map K,(A) — K.°P(A) between the algebraic and topological K-theory
of a given topological algebra A is an isomorphism is discussed; Karoubi’s conjec-
ture (Suslin—Wodzicki’s theorem) establishes that the answer is affirmative for stable
C*-algebras. Proofs of this theorem and of some of its variants are given.

The last two articles approach algebraic K-theory from a categorical point of
view.

Higher algebraic K-theory (after Quillen, Thomason and others), by
M. Schlichting, introduces higher algebraic K-theory of schemes; emphasis is on
the modern point of view where structure theorems on derived categories of sheaves
are used to compute higher algebraic K-groups. There are many results in the litera-
ture about the structure of triangulated categories, and virtually all of them translate
into results about higher algebraic K-groups. The link is provided by an abstract lo-
calization theorem due to Thomason and Waldhausen, which —omitting hypothesis—
says that a short exact sequence of triangulated categories gives rise to a long exact
sequence of algebraic K-groups. This theorem, and its applications, are the heart
of the article. Among the main applications presented in the article is Thomason’s
Mayer-Vietoris theorem, which says that if X is a quasi-compact, quasi-separated
scheme and U and V are open quasi-compact subschemes, then there is a long exact
sequence

KIHI(Unv) - KH(X) —> KII(U)(‘BKH(V) = KH(U rﬁ'v) = n‘I(X)

Although the particular case of this result for regular noetherian separated schemes
follows from Quillen’s early work in the 1970s, the full generality was obtained only
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twenty years later, by Thomason. The use of derived categories is essential in its
proof. Another application is Thomason’s blow-up formula. If ¥ C X is a regular
embedding of pure codimension d with X quasi-compact and separated, and X' is
the blow-up of X along Y, then

d—1
K.(X') = K.(X)2EPK.(Y)
i=l

The methods explained in Schlichting’s paper can also be applied to any of the
other (co-) homology theories which satisfy an analog of Thomason—Waldhausen’s
localization theorem; these include Hochschild homology, (negative, periodic, or-
dinary) cyclic homology, topological Hochschild (and cyclic) homology, triangular
Witt groups and higher Grothendieck—Witt groups (the last two when 2 is invertible).

Lectures on dg-categories, by B. Toén, provides an introduction to this theory,
which is deeply intertwined with K-theory. The connection comes from the fact that
the categories of complexes of sheaves on a scheme are dg-categories. The approach
to the subject emphasizes the localization problem, in the sense of category theory.
In the same way that the notion of complexes is introduced for the need of derived
functors, dg-categories are introduced here for the need of a “derived version” of the
localization construction. The existence and properties of this localization are then
studied. The notion of triangulated dg-categories, which is a refined version of the
usual notion of triangulated categories, is presented, and it is shown that many inva-
riants (such as K-theory, Hochschild homology, . . .) are invariants of dg-categories,
though it is known that they are not invariants of triangulated categories. Finally the
notion of saturated dg-categories is given and it is explained how they can be used in
order to define a secondary K-theory.

June, 2010 Paul F. Baum (University Park)
Guillermo Cortifias (Buenos Aires)

Ralf Meyer (Gottingen)

Rubén J. Sdanchez-Garcia (Diisseldorf)

Marco Schlichting (Coventry)

Betrand Toén (Montpellier)
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1 Introduction

These notes are based on a lecture course given by the first author in the Sedano
Winter School on K-theory held in Sedano, Spain, on January 22-27th of 2007. They
aim at introducing K-theory of C*-algebras, equivariant K-homology and KK-theory
in the context of the Baum—Connes conjecture.

We start by giving the main definitions, examples and properties of C*-algebras
in Sect.2. A central construction is the reduced C*-algebra of a locally compact,
Hausdorft, second countable group G. In Sect. 3 we define K-theory for C*-algebras,
state the Bott periodicity theorem and establish the connection with Atiyah—
Hirzebruch topological K-theory.

Our main motivation will be to study the K-theory of the reduced C*-algebra
of a group G as above. The Baum—Connes conjecture asserts that these K-theory
groups are isomorphic to the equivariant K-homology groups of a certain G-space,
by means of the index map. The G-space is the universal example for proper actions
of G, written EG. Hence we proceed by discussing proper actions in Sect. 4 and the
universal space EG in Sect. 5.

Equivariant K-homology is explained in Sect. 6. This is an equivariant version
of the dual of Atiyah—Hirzebruch K-theory. Explicitly, we define the groups KJG(X)
for j =0,1 and X a proper G-space with compact, second countable quotient G\ X.
These are quotients of certain equivariant K-cycles by homotopy, although the pre-
cise definition of homotopy is postponed. We then address the problem of extending
the definition to EG, whose quotient by the G-action may not be compact.

P.E. Baum et al., Topics in Algebraic and Topological K-Theory, 1
Lecture Notes in Mathematics 2008, DOI 10.1007/978-3-642-15708-0—1,
© Springer-Verlag Berlin Heidelberg 2011
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In Sect. 7 we concentrate on the case when G is a discrete group, and in Sect. 8
on the case G compact. In Sect.9 we introduce KK-theory for the first time. This
theory, due to Kasparov, is a generalization of both K-theory of C*-algebras and K-
homology. Here we define KK'(’;(A,C) for a separable C*-algebra A and j = 0,1,
although we again postpone the exact definition of homotopy. The already defined
K_,-G(X) coincides with this group when A = Cy(X).

At this point we introduce a generalization of the conjecture called the Baum—
Connes conjecture with coefficients, which consists in adding coefficients in a G-C*-
algebra (Sect. 10). To fully describe the generalized conjecture we need to introduce
Hilbert modules and the reduced crossed-product (Sect. 11), and to define KK-theory
for pairs of C*-algebras. This is done in the non-equivariant situation in Sect. 12 and
in the equivariant setting in Sect. 13. In addition we give at this point the missing
definition of homotopy. Finally, using equivariant KK-theory, we can insert coeffi-
cients in equivariant K-homology, and then extend it again to EG.

The only ingredient of the conjecture not yet accounted for is the index map. It
is defined in Sect. 14 via the Kasparov product and descent maps in KK-theory. We
finish with a brief exposition of the history of K-theory and a discussion of Karoubi’s
conjecture, which symbolizes the unity of K-theory, in Sect. 15.

We thank the editor G. Cortifias for his colossal patience while we were preparing
this manuscript, and the referee for her or his detailed scrutiny.

2 (C*-algebras

We start with some definitions and basic properties of C*-algebras. Good references
for C*-algebra theory are [1,15,39] or [41].

2.1 Definitions

Definition 1. A Banach algebra is an (associative, not necessarily unital) algebra A
over C with a given norm || ||

[:A—10,)

such that A is a complete normed algebra, that is, for all a,b € A, A € C,

(a) ||Aal| = [A[[|a]|

(b) lla+b| <|lall +[b]l

(c)|la| =0=a=0

(d) ||ab|| < ||al|||b]|

(e) Every Cauchy sequence is convergent in A (with respect to the metric d(a,b) =
lla—bl1)

A C*-algebra is a Banach algebra with an involution satisfying the C*-algebra
identity.
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Definition 2. A C*-algebra A = (A, || ||,*) is a Banach algebra (A,|| ||) with a map
x:A— A, a— a* suchthat foralla,bc A, A € C

(a) (a+b) =a"+b"

(b) (Aa)* = Aa*

(c) (ab)* = b*a*

(d) (a*)"=a

(e) ||aa*|| = ||a||* (C*-algebra identity)

Note that in particular ||a|| = ||a*|| for all @ € A: for a = 0 this is clear; if a # 0 then
2
llall # 0and ||al|* = ||laa*|| <
A C*-algebra is unital if it has a multiplicative unit 1 € A. A sub-C*-algebra is
a non-empty subset of A which is a C*-algebra with the operations and norm given
onA.

Definition 3. A x-homomorphism is an algebra homomorphism ¢ : A — B such that
o(a*) = (@(a))*, foralla € A.

Proposition 1. If ¢ : A — B is a x-homomorphism then || ¢(a)| < ||a|| for all a € A.
In particular, @ is a (uniformly) continuous map.

For a proof see, for instance, (41, Thm. 1.5.7].

2.2 Examples

We give three examples of C*-algebras.

Example 1. Let X be a Hausdorff, locally compact topological space. Let X ¥ = X U
{ P} be its one-point compactification. (Recall that X * is Hausdorff if and only if X
is Hausdorff and locally compact.)

Define the C*-algebra

Co(X) = {o: X" — Cl|a continuous, &(p«) =0} ,

with operations: for all &, € Co(X),pe X", A €C

(a+B)(p) = alp)+B(p),
(Aa)(p) = Aa(p),
(aB)(p) = a(p)B(p),

a’(p) = a(p),
el = igpla p)l.

Note that if X is compact Hausdorft, then

Co(X)=C(X) ={a:X — C|a continuous} .
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Example 2. Let H be a Hilbert space. A Hilbert space is separable if it admits a
countable (or finite) orthonormal basis. (We shall deal with separable Hilbert spaces
unless explicit mention is made to the contrary.)
Let Z(H) be the set of bounded linear operators on H, that is, linear maps 7T :
H — H such that
ITIl = sup ||Tul| <ee,

full=1

where |[u|| = (1,u)"/?. Itis a complex algebra with

(T+S)u =Tu+ Su,
(AT)u = A(Tu),
(TS)u = T(Su),
forall T,S € £(H), u € H, A € C. The norm is the operator norm ||T|| defined
above, and T~ is the adjoint operator of T, that is, the unique bounded operator such

that
(Tu,v) = (u, T*v)

forall u,ve H.

Example 3. Let £ (H) be as above. A bounded operator is compact if it is a norm
limit of operators with finite-dimensional image, that is,

H(H)={T € L(H)|T compactoperator} = {T € L(H)|dimc T(H) < oo},

where the overline denotes closure with respect to the operator norm. ¥ (H) is a
sub-C*-algebra of .Z(H). Moreover, it is an ideal of .Z(H) and, in fact, the only
norm-closed ideal except 0 and .Z(H).

2.3 The Reduced C*-algebra of a Group

Let G be a topological group which is locally compact, Hausdorff and second coun-
table (i.e. as a topological space it has a countable basis). There is a C*-algebra
associated to G, called the reduced C*-algebra of G, defined as follows.

Remark 1. We need G to be locally compact and Hausdorff to guarantee the existence
of a Haar measure. The countability assumption makes the Hilbert space L?(G) se-
parable and also avoids some technical difficulties when later defining Kasparov’s
KK-theory.

Fix a left-invariant Haar measure dg on G. By left-invariant we mean that if
f: G — C is continuous with compact support then

[ rtexde = [ fe)dg  forallyeG.
G JG



