g

{

MACRO-11 PROGRATMMING
-AND PDP-11 ORGANIZATION

Gerald W. Cichanowski

= -

T3

By et

MACRO-11 Programming
And

PDP-11 Organization

\ BB 7535 / . .
1348 5879 Gerald W. Cichanowski

Michigan State University

oo
>
bine i
)

E9062265 :
v o

#

Engineering Press, Inc. San Jose, California 95103-0001

© Copyright 1982, Engineering Press, Inc.

All rights reserved. Reproduction or translation of any part of
this work beyond that permitted by sections 107 or 108 of the
1976 United States Copyright Act without the permission ofthe
owner is unlawful.

Printed in the United States of America

Trademarks of Digital Equipment
Corporation:

DEC, DIGITAL, Massbus, PDP, RSTS,
Unibus, LSI-11, and RT-11.

Library of Congress Cataloging
In Publication Data

Cichanowski, Gerald W., 1952-
MACRO-11 programming and PDP-11 organization.

Bibliography: p.

Includes index.

1. PDP-11 (Computer)--Programming. 2.MACRO-11
(Computer programming language) |I. Title. Il Title:
MACRO-11 programming and P.D.P.-11 organization.
QA76.8.P2C5 1982 001.64°2 82-11498
ISBN 0-910554-38-2

Engineering Press, Inc.
P. O.Box 1
San Jose, California 95103-0001

Preface

This book was written from my lecture notes for a
course in assembly language programming, taught at St.
Mary's College, Winona, MN 55987. The course is one
semester in 1length and required for Computer Science
majors at St. Mary's. The background of the students
who take the course consists of a one semester course
in FORTRAN programming, and a one semester course,
which we call Advanced Programming. In the second
course, students complete complex programs as assign-
ments, and are given an overview of the field of com-
puter science. There they are introduced to the to-
pics of assemblers, compilers and operating systems,
from a functional, rather than a theoretical or imple-
mentational point of view.

Although in the course, the students become fami-
liar with PDP-11 assembler programming, the purpose of
this course is not to develop assembler - programmers.
The course gives the student an understanding of how
computer hardware is organized, and how it interacts
with software. For those whose only goal is to write
MACRO-11 programs, chapter 19 can be omitted, without
a loss of needed material.

Chapter 19 is intended to describe in general
terms the makeup and operation of computer hardware.
It is not intended to describe in detail how the

PDP-11's function.

The exercises and examples in the book begin by
using MACRO-11 subroutines which are called from FOR-
TRAN mainline programs. This is done for two reasons.
First, it allows the discussion of input/output to be
delayed until near the end of the book. Secondly, my
contention is that on those occasions when writing
code in assembler is Jjustified, that code should be
written as subroutines which are called from
high-level languages.

Contents

Preface i v
1. NumberSystems 1
2. PDP-11 Data Representation 9
3. InstructionFormats 21
4. PDP-11 Organization.......................... 29
5. MACRO-11 i, 35
6. Some Basic Instructions
Using Relative Addressing 51
7. Changing ProgramFlow 63
8. Registers As Accumulators 71
9. ElSiInstructions 79
10. The Macro in MACRO-11 89
11. Immediate Addressing 99
12. Instruction Modification And Indexing 105
13. ByteOperations 115
14. Indirect Addressing 121
16. Stacks 131
16. Logical Instructions 139
17. Subroutines 153
18. Input/Output 171
19. Hardware 189
20. Relocation i, 205
21. Floating Point Operations 211
Appendix
A. PDP-11InstructionSet 217
B. AddressingModes............................ 223
C. ASCliCharacters...............cccvuuuunnn... 224
D. RSTS/E Directives............................ 225
E. RSTS/E Error Messages 241

Indexo 245

-1

Number Systems

Meaning of Numbers

'Numbers' are symbolized by placing together a
series of characters, which we recognize as having
numeric value. The standard characters we are used to
dealing with are the following; O, 1, 2, 3, 4, 5, 6,
7, 8 and 9. We normally associate the 'values' zero,
one, two, etc., with them. When we place more than
one character together, say '123', the meaning of the
symbols becomes harder to decipher. In order to es-
tablish the meaning of the number, we must know what
‘base’ the number is in. If we go back to our example
123, normally we associate the value one hundred twen-
ty three with it. This is because normally we deal
with base ten arithmetic. As a result, the symbols
represent values through the following process.
Starting from right to left, the value the symbols re-
present is the sum of 3 x 1 + 2 x 10 + 1 x 100.

To say a number is in a certain base, say b, we
are saying two things about the number. First, we are
saying that there will be a collection of distinct
symbols used to represent numbers in that base. There
will be b symbols in that set. For example, a number
in base ten is represented by the symbols 0,1, ... 9,
likewise a number in base two would be represented by

1

2 MACRO-11 Programming

the symbols O and 1. Also, by saying a number is in
base b, we are saying the value given to the number

represented by the symbols is as follows. For some
arbitrary base b number;

D(n)D(n-1)...D(2)D(1)D(0).D(~1)D(-2)...D(-m)

The value is as follows.

D(n)xb™ + D(n-l)xbn'1 ..+ D(l)xbl + D(0)xb? +
D(-1)xb™1 + ... + D(-m)xb™"

Example

1011.011 base 2 has the following value.

0 1

¢ 12272 + 12272
= 11.375 base 10

1223 + 0x2% + 1x21 + 1x20 + 0x2”

Converting Between Bases

In the first part we saw that the meaning a group

of symbols takes on, is a function of the base used to
express the number. Often times, we will have a
number in one base, and we will need to express it in
another. The most straightfoward way of performing
this conversion is the following. When we are evalu-
ating the expression:

Dm)xd® + D-1)x™ L + ...+ D(0)xb" + D(-1)xb7L

+ D(-m)xb™™

simply perform the arithmetic operations in the new
base. Unfortunately, most people, especially the au-
thor, are not adept at performing these types of cal-
culations in a base other than ten. Therefore, this
technique is normally only useful for converting a
number from a base other than ten to base ten.

Number Systems 3

Example
45.3 base 6 becomes

4x61 + 5x6°0 + 3x6~1 = 29.5 base 10.

Since the previous method, which we will call the
"expansion' method, is only useful for going to base
ten, we will look at another technique, which will be
useful for converting from base ten to another. In
order to do this, we must split our number into two
parts. The first part, which we will call the integer
part, is that which is to the left of the radix point.
The rest of the number, that to the right of the radix
point, is called the fractional part.

To convert the integer part of the number we will
use a technique called the 'division/remainder' tech-
nique. The process is as follows.

1. In the old base, divide the number by the new base
obtaining a quotient and a remainder.

2. The remainder becomes the next digit to the 1left
of the radix point.

3. If the quotient is zero, you are finished, other-

wise replace the original number by the quotient and
repeat the process starting at step one.

Example

123 base 10 to base 8 is done as follows.

123 / 8 = 15 remainder 3
15 / 8 = 1 remainder 7
1/ 8 = 0O remainder 1

Which yields the following base 8 number, 173.

4 MACRO-11 Programming

Example 2

124 base 10 to base 16.

124 / 16
7/ 16

7 remainder 12
O remainder 7

This yields 7C as the base 16 equivalent of 124 Dbase
10. Note that a base 16 number needs 16 symbols to
represent the values in base ten, of zero to fifteen.
This is done by using the symbols O ... 9 and addi-
tionally the symbols A, B, C, D, E and F to represent
the values ten through fifteen.

Converting Fractions

The technique we will use to convert the frac-

tional part of a number is the 'multiplication' method
and is as follows.

1. In the old base, multiply the original number by
the new base, obtaining the following, an integer part
and a fractional part.

2. The integer part becomes the next digit to the
right of the radix point.

3. If the fractional part is zero, or you have re-
ached the number of places to the right of the radix
point you wish to carry, you are finished. Otherwise,
replace the original number with the fraction obtained
in the multiplication and repeat the process starting
at step 1.

Note: a fraction in one base may not have a finite
counterpart in another. Unfortunately, our only solu-

tion to this problem is to settle for an approximation
to the number.

Number Systems

Example

Convert .25 base ten to base two.

.25 x 2 = 0.5
S5 x2=1.0
This yields the base two number .01

Example 2

Convert .2 base ten to base 8.

.2x 8 1.6
.6 x 8 = 4.8
.8 x8=56.4
4 x 8 = 3.2
-2 x 8 = 1.6 Note, the pattern will now repeat.

This yields the following repeating base eight frac-
tion.

«14631463...etc.

A Shortcut

Very often we will need to convert an integer
between base 8 and base 2, or base 16 and base 2.
Since in each pair, both bases are a power of two,
this conversion becomes very simple. When converting
from base 2 to base 8, starting from the right, group
the digits into groups of three. Each group of three
binary digits now represents one base eight digit. To
reverse the process, simply take each octal digit and
express it as a group of three binary digits. If you
want to convert between base two and base sixteen, use

the same procedure, just group the binary digits dinto
groups of four.

6 MACRO-11 Programming

Example
Convert 10101111011 base two to base eight.
The groups of digits become

10 101 111 011, which represent the octal digits
2517 3.

Thus the base eight number is 2573.

Example 2

Convert 732 base 8 to binary.
Each octal digit now becomes three binary digits.

7 3 2 becomes 111 011 010, for the binary number
111011010.

Example 3
Convert 10101111011 binary to hexadecimal.
The groups of digits become

101 0111 1011, yielding the base sixteen number 57B.

Notation

Throughout this book, many numerical quantities

are used. If the base of the numbers is not obvious
from the context, they will be written in the follow-
ing fashion.

123 (8)

The number in parenthesis indicates the base of the
number.

9062265

Number Systems

Exercises

1.1

1.2

1.3

1.4

1.5

Convert the following base ten numbers to

nary.
a. 263
b. 174
c. 25

Convert the following octal numbers to
mal.

a. 36
b. .732
c. 177

\ 45f§,
Convert the base ten‘numbers in 1.1 to
and hexadecimal:

Convert the following binary numbers to
and hexadecimal.

a. 10110110
b. 11100011

c. 10101010

bi-

deci-

octal

octal

Convert the following octal numbers to binary.

a. 176
b. 377

c. 17770

MACRO-11 Programming

Convert the following hexadecimal numbers to
binary.

a. ABC
b. 1EFO

c. 377

2

PDP-11 Data Representation

The primary storage wunit of a computer is a
'bit', BInary digiT. A bit is a unit which is capable
of storing one binary digit, O or 1. Bits are put to-
gether into groups to form 'bytes'. A byte is a group
of bits which is capable of storing a single alphanu-
meric character. On the PDP-11 a byte is a group of
eight bits. Bytes in turn are grouped together into
units which will hold an integer value. On the PDP-11
this is two bytes or sixteen bits. This group of bits
is referred to as a 'word'.

Characters are stored in a computer's memory by
coding them as binary numbers. The length of the
number will correspond to the length of a byte on the
computer we are dealing with. Many computer systems,
including the PDP-11, use a standard code for the
characters. This code is known as ASCII, see appendix
C. The rightmost seven bits of a byte correspond to
the ASCII code for a given character. The leftmost
bit is reserved as a parity bit. The parity bit is
used for error detection. Its use will be explained
in a later chapter.

Sign-Magnitude

Integer values in most computers are stored in a
single word. For positive integers this becomes sim-

9

10 MACRO-11 Programming

ple. Simply code the integer as a binary number, with
the number of digits equal to the number of bits in a
computer's word. Negative numbers however, present a
special problem.

One technique for storing negative numbers, the
'sign-magnitude' notation, is as follows. If a com-
puter has a word of length n, code the integer as a
binary number of length n-1. . Then in the leftmost bit
of the computer word, place a one if the number is ne-
gative or a zero if the number is positive. This
technique has the advantage that it is very simple to
form the negative of a number. A number and its posi-
tive counterpart are the same, except for one bit, the
leftmost or sign bit. However, there is a major di-
sadvantage to this form of storing integers. The di-
sadvantage Dbecomes evident when we try to add or sub-
tract two numbers. To see the problem, we will work
through the procedure of adding two arbitrary numbers.
If a and b are two numbers, they are added as follows.
First, we 1look at the sign of the two numbers. If
they are the same, we simply add the numbers and give
the sum the sign that both a and b had. If a and b do
not have the same sign, this becomes more difficult.
If +this is the case, we must determine which of a and
b has the largest magnitude. Then we subtract the
magnitude of the smaller number from the magnitude of
the larger one. The sum is the result, once it has
been given +the sign of the number with the largest
magnitude.

PDP-11 Data Representation 11

Example

23 -10 =23 23
+22 +-11 + 10 +-10

+45 - 21
23 23
- 10 - 10
13 13
-15 13

This technique, as you should be able to see,
presents the problem, that the process of adding and
subtracting two numbers becomes fairly involved.
Since we are dealing with computers, we need to con-
sider the difficulty of implementing some form of
hardware to perform the operations. Two other forms
of representing negative numbers exist. These forms
have the advantage that adding and subtracting numbers
with mixed signs is much simpler.

One’s Complement

The first of these forms is known as 'one's com-
plement' notation. In this form, to store the nega-
tive of an integer, we take the positive form of it,
add zeroes to the left until we have the number of di-
gits which will fit in one of our computer's words.
Then wherever there is a zero, we put a one and wher-
ever there is a one we put a zero.

Example

If we are dealing with three bit numbers, the one's
complement of O, 1, 2 and 3 are as follows.

12 MACRO-11 Programming

Number Complement
000 +0 111 -0
001 +1 110 -1
010 +2 101 -2
011 +3 100 -3

Addition ahd subtraction of one's complement
numbers is very simple. If a and b are two numbers in
one's complement notation, to add the numbers, simply
ignore the signs and add the numbers. You will obtain
a sum the same length as the original numbers and pos-
sibly a carry to the left. If there is a carry to the
left, simply add it to the original sum. This process
is known as 'end-round-carry'. The result will now be
of the correct sign and magnitude, assuming we have
not generated a sum which is too large to fit in one
of our computer's words. To subtract one number from
another, simply take the one's complement of it and
then add the two numbers.

Example
1 001
+-2 +101
-1 110
3 o011
+-2 +101
1 1)000

001

