DATIA
STRUCTURED
PROGRAM
DESIGN

Kirk Hansen

DATA STRUCTURED
PROGRAM DESIGN

Kirk Hansen

rentice-Hall, Englewood Cliffs, New Jersey 07632

Library of Congress CBulogingin-Pablicatio® Dud
HANSEN, KIRK (date)

Data structured program design.

Bibliography: p.
Includes 1}:1 ex.

1. Electronic digital computers— Programming.
2. Structured programming. 3. Data structures.
(Computer science) 1. Title.

QA76.6.H3338 1986 005.1'13 85-25729
ISBN 0-13-196841-6

Editorial/production supervision and

interior design: Tracey Orbine and Diana Drew
Cover design: 20/20 Services, Inc.
Manufacturing buyer: Gordon Osbourne
Editorial consulting: Karen Howard Brown

© 1986, 1984 by Ken Orr & Associates, Inc.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, andwtesting of the theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation
contained in this book.%The author and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

All rights reserved. No part of this book may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 21

ISBN 0-13-19k841-k 025

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Whitehall Books Limited, Wellington, New Zealand

Foreword

By the end of the 1970s, the business of designing software was dominated by four
competing schools of thought:

e the Constantine-Myers-Yourdon-Stevens School: people who believe a system
should take its shape from the pattern of interactions among functions per-
formed by the system

e the Warnier-Orr-Jackson School: people who believe a system should take
its shape from the structure of the data that drives it

e the Parnas School: people who believe a system should be structured so that
its modular walls serve to isolate and conceal complexities of data and process

e the Mugwump School: people who believe design is for sissies and that the
structure of the system should be whatever occurs to the coder while seated
at the terminal.

As a result of my writing, I have long been classified as a member of the first
of these groups, the “function-structured” school of design. And Kirk Hansen is
clearly allied with the second group, the ‘“‘data-structured” school of design. So,
how have I come to be writing a foreword to Kirk’s book?

My answer stems from a growing conviction that the first three approaches
are all valid, and all necessary. The notion of using one of these disciplines to
suppress the others is onerous; it amounts to saying, “Truth is so valuable we have
to use it sparingly.” For a given class of programs, any of the techniques might
serve well. But if you're building a great diversity of applications, you need a
diversity of approaches. If you're building systems, particularly large and complex
systems, you need all the help you can get—a trick from Myers here, some Jackson

vii

“backtracking” there, a Warnier/Orr approach wherever the data gives a strong
hint about process structure, some Parnas thinking to abstract and conceal com-

plexity . . . and more.
That famous software engineer Mao Tse Tung said, “Let a thousand blossoms

grow, let a thousand schools of thought contend.” Of course, Mao didn’t really
mean it: He not only suppressed competing schools of thought, he even suppressed
flowers, judging them to be “‘bourgeois.” But I do mean it. I believe that as a
software builder you need an army of ideas to support you. In particular, no matter
what school you belong to, you need the ideas set out in Kirk Hansen’s crystalline
presentation of Data Structured Program Design.

Tom DeMarco
Principal
The Atlantic Systems Guild

viii Foreword

A Note from Ken Orr

New ideas, even great new ideas, often take a very long time to become popular.
One reason is because it is not enough that an idea be a good one, it must also be
communicated to those who need it. Time after time, poor ideas that are well
communicated have won out over good ideas poorly presented.

Kirk Hansen has given us the best of both worlds in this book. He has taken
a great idea (data structured programming) and communicated it superbly. Not
only has Kirk done an excellent job of communicating both the letter and spirit of
the Ken Orr Data Structured Systems Development (DSSD®) methodology, he
has been able to compare and contrast it with Warnier’s and Jackson’s approaches
to data structured programming as well.

This book is a major contribution to the growing body of software engineering
literature. It is clear and informative and, best of all, it is fun to read. Kirk Hansen
has demonstrated conclusively that important technical ideas don’t have to be
boring.

One final note. Throughout the book, Kirk refers to the Ken Orr method-
ology. In this regard, it is important to point out that the Ken Orr methodology
is not the work of a single person, or even that of a single firm. Rather, it is the
result of the work of hundreds of people over the last two decades, including Mr.
Hansen. I am personally:delighted that someone as talented as Kirk Hansen should
add his own particular brand of creativity to communicate the DSSD® methodology
to a wide audience eager to make programming simple, straightforward, and ul-
timately scientific.

Ken Orr
Topeka, Kansas

ix

Preface

You can derive the structure of a program from the structure of its data.

The insights that let you do this come from three people: Jean-Dominique
Warnier, Michael Jackson, and Ken Orr. This book fully describes Orr’s program
design techniques and outlines the ideas of Warnier and Jackson.

This book is mainly about how to design programs, not how to code them,
so it won’t make much difference what programming language you know. But you
should be familiar with at least one of the major procedural languages: PL/1,
COBOL, FORTRAN, ALGOL, BASIC, Pascal. Where code is needed we use
COBOL, since it’s the most widely used language among business programmers
and is fairly clear even to programmers who have never seen it before. The programs
in this book have been compiled with the IBM OS/VS COBOL compiler and run
on an IBM 3081.

The book will be more valuable if you keep a paper and pencil handy and
try things for yourself as they are discussed. “I hear and I forget. I see and I
remember. I do and I understand.” It’s easy to think you understand something
when you’re just watching it happen; the only way to know for sure is to try it
yourself.

Several chapters contain suggestions for *“further reading.” These references
give author and title only; full publication data may be found in the bibliography
at the end of the book.

Finally, an explanation of the title may be in order. Data structured program
design is a structured technique (a detailed procedure) for deriving the design of
a structured program from the data structure. Shuffling the emphasized words
gives “data structure structured structured program design,” which is accurate but
unpronounceable; so one of the structures has swallowed the rest.

xi

NOTES ON THE REVISED EDITION

This Revised Edition has three main changes. First, three sections have been added.
They are 6.4, “Hidden Hierarchies”; 14.6, “Using Hidden Hierarchies for Effi-
ciency”; and 14.7, “The Logical Data Structure.”

The second change is revision of some terms to match the latest release of
Orr’s DSSD® method. Specifically:

Logical Process Structure (LPS) is now Logical Output Mapping (LOM).
Logical Read Routine (LRR) is now Physical Input Mapping (PIM).
Physical Put Routine (PPR) is now Physical Output Mapping (POM).

The phrase “read routine” has mostly been changed to “input mapping,” but the
terms are often used interchangeably.

The third change is the separation of the material on inversion from the main
flow of the book. Two principles guide the discussion of inversion in this edition:

1. Don’t invert unless you have to. If you're lucky enough to work with a system
that makes inversion unnecessary, skip the material on inversion completely.

2. Even if your system makes inversion unavoidable, ignore the inversion ma-
terial on your first reading of the book.

To this end, Chapter 11 and Part III have been prefaced with suitable warn-
ings, and the chapters in Part III have been reorganized so the inversion material
is easier to skip.

ACKNOWLEDGMENTS

This book was the idea of Morris Nelson, vice-president of field operations at Ken
Orr and Associates, Inc. I am grateful for his strong support and assistance in
bringing it to fruition.

The book borrows heavily from KOA instructional materials, especially for
examples and exercises. It owes a great deal to all the KOA instructors, past and
present, who have contributed to the instructional material and to the development
of the methodology itself. I am especially grateful to Ken Orr, Rick Messinger,
and Stiles Roberts for their comments on an earlier draft. Thanks also to Dave
Higgins, whose new book, Designing Structured Programs, impelled me to clarify
my thinking on several points; and to the students in my classes for Ken Orr and
Associates, whose questions and comments helped shape the material presented
here.

M. Jean-Dominique Warnier kindly read Chapters 18 and 19, which survey
parts of his work, and made several corrections. And Jim Batterson of Best Products
provided a detailed critique of an earlier draft of the book, which led to several
improvements.

I am grateful to Manufacturers Life for cooperating in my association with
KOA, and for giving concrete assistance with this book.

xii Preface

Specific thanks go to Ken McEvoy and Bob Stark, who worked with me in
our initial encounter with data structured program design. Ken also advised me
on certain aspects of Jackson’s work for this book. John Campbell’s comments led
to the revised treatment of inversion in this edition.

Karen Brown provided meticulous and cheerful editing; but her insistence
that data names mustn’t change between sentences, and that referenced sections
should actually exist, has made reading this book less of an adventure than it might
have been.

My father’s comments on an early draft had a healthy effect on the book’s
style.

Finally, I thank my wife, Mary-Anne Sillamaa, for her love and support while
this book was being written.

Preface xiii

Contents

Foreword
A Note from Ken Orr

Preface

Part I
TWICE OVER LIGHTLY

You Already Do It
Data Structure
Process Structure

Code

vii

X

x1

16

25

10.

11.

12,

13.

14.

15.

16.

17.

Part 11
OUTPUT

Introduction to Logical Output Structure (LOS)
Logical Output Structure Formalized

Logical Output Mapping

More on Coding

Looping and Control Breaks

Concurrency

Inversion

Complex Calculations

Part 111
INPUT

Physical Input Mapping
Driver Files

When There Isn’t Any Driver
Select, Unstring, and Sort

File Merge and Update

37

46

60

75

84

93

105

123

135

136

148

169

182

193

Contents

18.
19.
20.
21.

22,

Part IV
OTHER VOICES

Warnier: The Basics

Warnier: Optimization and Phases

Jackson: The Basics

Jackson: Backtracking and Inversion

Goal Directed Programming

Epilogue: What Next?

Appendix: Comparison of Orr, Warnier, Jackson
Bibliography

Index

Contents

207

208

225

242

258

276

287

289

298

a9y

Part 1

TWICE OVER
LIGHTLY

The basic road map of data structured program design is data structure —> process

structure —> code.
This Part follows the road twice: once to show that it’s familiar territory; then

again to study the critical role of Warnier/Orr diagrams.

You Already Do It

Even if you’ve never heard of data structured program design, you regularly use
its principles. Here’s proof in the form of three simple coding exercises. Please
take a couple of minutes now to write routines to the following specifications.
(COBOL programmers: Procedure Division code is all that’s needed.)

Exercise 1
Display the message:
HAPPY

NEW
YEAR

Exercise 2

Display either the message:
GOOD MORNING

or the message:

GOOD DAY

depending on whether or not the hour is less than 12.

Exercise 3

Display the warning:
FLY AT ONCE — ALL IS DISCOVERED

15 times.

If you tried the exercises, your solutions probably look somewhat like the
following. For Exercise 1:

EXERCISE-1.
DISPLAY "HAPPY".
DISPLAY “NEW".
DISPLAY "YEAR".

For Exercise 2:

EXERCISE-2.
IF HOUR < 12
DISPLAY "GOOD MORNING"

SE
DISPLAY "GOOD DAY".

For Exercise 3:

EXERCISE-3A.
PERFORM DISPLAY-WARNING 15 TIMES.

DISPLAY-WARNING.
DISPLAY "FLY AT ONCE -- ALL IS DISCOVERED".

Or perhaps:

EXERCISE-3B.
MOVE 0 TO WARNING-COUNT.
PERFORM DISPLAY-WARNING-AND-BUMP-COUNT
UNTIL WARNING-COUNT = 15,

DISPLAY-WARNING-AND-BUMP-COUNT.
DISPLAY "FLY AT ONCE -- ALL IS DISCOVERED".
ADD 1 TO WARNING-COUNT.

(If you treated each exercise as a stand-alone program, you would include STOP
RUN in each solution. Also, depending on the compiler you use, you might have
apostrophes [’] instead of quotation marks [] around the literals.)

As these exercises demonstrate, you already know the three basic rules of
data structured design:

1. When the data is a sequence (HAPPY, then NEW, then YEAR), use a simple
sequence of instructions.

2. When the data is a selection (either GOOD MORNING or GOOD DAY),
use a conditional instruction (IF. . .THEN. . .ELSE).

3. When the data is a repetition (15 copies of “FLY AT ONCE—ALL IS
DISCOVERED”), use a looping instruction (PERFORM. . . TIMES or
PERFORM. . .UNTIL).

Chap. 1 You Already Do It 3

If you have ever encountered structured programming, you will remember that
sequence, selection, and repetition are enough to build any program. But that’s
like knowing nails and boards are enough to build a house. What you want to
know is: Where should you use which?

Data structured design tells you. It says: identify the sequences, selections,
and repetitions in your data. Then work out the structure of your process logic
by applying the three rules given above.

With this approach you’ll be able to produce reports, balance files, navigate
data bases, manipulate strings of text, and do calculations. If such matters make
up much of your programming load, you'll find data structured design valuable.

It’s not the be-all and end-all, though, so we’ll also touch on some other
useful techniques and point to further reading about them.

4 Twice Over Lightly Part |

Data Structure

Chapter 1 was the first trip along the path: data structure — process structure
—— code. In the next three chapters we will follow the path again, stressing the
role of the Warnier/Orr diagram.

Warnier/Orr diagrams can represent data structure, process structure, or code.
This makes them very useful, not only in handling each phase properly, but also
in making the transition from one phase to the next.

This chapter examines the use of Warnier/Orr diagrams in representing data
or things. Recall our three messages in the previous chapter; they illustrated the
three basic constructs of sequence, selection, and repetition. We’ll now see how
to diagram each of these constructs, and then look at how to combine them.

2.1 SEQUENTIAL DATA

The first message was:

HAPPY
NEW
YEAR

We would diagram this like so:

"“HAPPY"
MESSAGE 1 “NEW”
“YEAR"

