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Message from the General Chair

I would like to take this opportunity, on behalf of Kent Ridge Digital Labs, to
extend a warm welcome to all of you to the Sixth ACM Conference on Computer
and Communications Security. The first five conferences were held in Fairfax,
Virginia (1993 and 1994), New Delhi, India (1996), Ziirich, Switzerland (1997)
and San Francisco, California (1998). For the sixth in the series, we are very
pleased to welcome you to Singapore, the Lion City.

In the past five years, this conference brought together the community of in-
dustry and academia who are involved in the research, development, use, and
management of computer and communications security technology. The con-
ference has established itself as a forum at which research as well as practical
aspects of computer and communications security are enthusiastically addressed.
We hope to continue this tradition by offering you another successful forum with
an interesting program.

This conference was put together with the support of several people. To be-
gin with we are extremely grateful to Ravi Sandhu who proposed to have the
conference in Singapore. Our conference is sponsored by ACM SIGSAC and
hosted by Kent Ridge Digital Labs. Two conference exhibitors, DigiSafe Pte Ltd
and Internet Appliance Pte Ltd kindly sponsored tea breaks to the conference.
We thank these organizations for their financial support and encouragement.
Special thanks also to the conference organizing committee, in particular De-
sai Narasimhalu (Local Arrangement Chair), Jianying Zhou (Publicity Chair),
Victorine Chen-Toh (Registration Chair), Robert Deng (Exhibits Chair), Ngair
Teow Hin (Tutorial Chair), and Matt Franklin (Publication Chair).

The success of the conference depends on the quality of the program selection.
We are indebted to our Program Chair Gene Tsudik, the Program Committee
members, and the external referees for the wonderful job they have done. Finally
we would like to thank the authors who submitted papers and the participants
from all over the world who have chosen to honor us with their attendance.

Hope you enjoy the conference and have a pleasant time in Singapore!

Juzar Motiwalla

CEO

Kent Ridge Digital Labs
Singapore
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Message From the Program Chair

This year’s crop of submissions was truly outstanding in both quality and num-
ber. A total of 83 submissions were received testifying to the growing popularity
and importance of ACM CCS. (This is despite many competing conferences and
workshops.) Submissions came from around the world and spanned a very broad
range of subjects: from classical cryptography and formal methods to intrusion
detection and experimental systems.

The program committee met on June 23, 1999 at USC/ISI in Marina del Rey,
CA. After a very long and arduous day, 16 papers were selected representing
the very best of the state-of-the-art. Like the pool of submissions they were
drawn from, these 16 papers provide an excellent and broad coverage of the
field. They represent timely and important advances in their subject areas and
attest to the talents and dedication of the authors.

In addition to the technical papers, the conference program includes tutorials
by Bruce Schneier and Ravi Sandhu, an opening talk by Robert Deng, a panel
session moderated by Dan Boneh, a newly introduced Rump Session for short
talks reporting on very recent research, and two outstanding invited talks by
Edward Felten and Victor Shoup.

There are many people I would like to thank for their help and support. First
off, I am very grateful to the authors of all submitted papers for their patronage
of ACM CCS and for the hard work invested in the submissions. Collectively
representing the research community, they are both the backbone and the target
audience of this conference. Members of the program committee have done an
exceptional job this year and I cannot thank them enough for the time and effort
in reviewing papers, partaking in the PC meeting and otherwise helping out in
many related tasks and activities. It has been a pleasure and and an honor to
work with them. Likewise, I would like to express my gratitude to the delegated
reviewers for their selfless community service and insightful reviews. A special
word of thanks goes to Mike Reiter who, as previous year’s Program Chair,
shared his knowledge and experience. Same sentiments are due to Matt Franklin
for a great job as the Proceedings Chair and Jianying Zhou for promoting and
advertizing CCS as the Publicity Chair. I am also thankful to Juzar Motiwalla
and Ravi Sandhu (General Chair and Steering Committee Chair, respectively)
for their help and support.

Having followed ACM CCS from its inception in 1992 — as an attendee, author or
organizer — I am very happy to note its continuing growth in popularity, quality
and maturity. I believe that it is now firmly entrenched as the premier security
conference. In closing, I am very proud of my affiliation with this conference
and appreciative of the opportunity to serve as the Program Chair.

Gene Tsudik
Program Chair, ACM-CCS-6
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The Base-Rate Fallacy and its Implications
for the Difficulty of Intrusion Detection

Stefan Axelsson

Department of Computer Engineering
Chalmers University of Technology
Goteborg, Sweden
Email: saz@ce.chalmers.se

Abstract

Many different demands can be made of intrusion detection
systems. An important requirement is that it be effective
i.e. that it should detect a substantial percentage of intru-
sions into the supervised system, while still keeping the false
alarm rate at an acceptable level.

This paper aims to demonstrate that, for a reasonable
set of assumptions, the false alarm rate is the limiting fac-
tor for the performance of an intrusion detection system.
This is due to the base-rate fallacy phenomenon, that in or-
der to achieve substantial values of the Bayesian detection
rate, P(Intrusion|Alarm), we have to achieve—a perhaps
unattainably low—false alarm rate.

A selection of reports of intrusion detection performance
are reviewed, and the conclusion is reached that there are
indications that at least some types of intrusion detection
have far to go before they can attain such low false alarm
rates.

1 Introduction

Many demands can be made of an intrusion detection system
(IDS for short) such as effectiveness, efficiency, ease of use,
security, inter-operability, transparency etc. Although much
research has been done in the field in the past ten years, the
theoretical limits of many of these parameters have not been
studied to any significant degree. The aim of this paper is
to discuss one serious problem with regard to the effective-
ness parameter, especially how the base-rate fallacy may
affect the operational effectiveness of an intrusion detection
system.

2 Problems in Intrusion Detection

The field of automated computer intrusion detection—
intrusion detection for short—is currently some nineteen
years old [1], with interest gathering pace in the past ten
years.

Intrusion detection systems are intended to help detect a
number of important types of computer security violations,
such as:
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e Attackers using prepacked “exploit scripts.” Primarily
outsiders.

e Attackers operating under the identity of a legitimate
user, for example by having stolen that user’s authenti-
cation information (password). Outsiders and insiders.

o Insiders abusing legitimate privileges, etc.

Early work (see [1,4, 5, 18]) identified two major types of
intrusion detection strategies.

Anomaly detection The strategy of declaring everything
that is unusual for the subject (computer, user, etc.)
suspect, and worthy of further investigation. We add
the requirement that the system be self-learning for it
to qualify as an anomaly detection system.

Anomaly detection promises to detect abuses of legit-
imate privileges that cannot easily be codified into se-
curity policy, and to detect attacks that are “novel”
to the intrusion detection system. Problems include a
tendency to take up data processing resources, and the
possibility of an attacker teaching the system that his
illegitimate activities are nothing out of the ordinary.

Policy detection Our term for the detection strategy of
deciding in advance what type of behaviour is undesir-
able, and through the use of a default permit or default
deny policy, detecting intrusions. The default permit
case is often referred to as signature based detection
or misuse detection, while we term the few published
instances of default deny systems specification-based in-
trusion detection after the first such system [8].

Policy-based detection systems promise to detect
known attacks and violations easily codified into secu-
rity policies in a timely and efficient manner. Problems
include a difficulty in detecting previously unknown in-
trusions. If a database containing intrusion signatures
is employed it must be updated frequently.

Early in the research it was suggested in [6,12] that the
two main methods ought to be combined to provide a com-
plete intrusion detection system capable of detecting a wide
array of different computer security violations, including the
ones listed above.

At present, the many fundamental questions regarding
intrusion detection remain largely unanswered. They in-
clude, but are by no means limited to:



Effectiveness How effective is the intrusion detection? To
what degree does it detect intrusions into the target
system, and how good is it at rejecting false positives,
so called false alarms?

Efficiency What is the run time efficiency of the intrusion
detection system, how many computing resources and
how much storage does it consume, can it make its
detections in real time, etc?

Ease of use How easy is it to field and operate for a user
who is not a security expert, and can such a user add
new intrusion scenarios to the system? An important
issue in ease of use is the question of what demands
can be made of the person responding to the intru-
sion alarm. How high a false alarm rate can he re-
alistically be expected to cope with, and under what
circumstances is he likely to ignore an alarm? (It has
long been known in security circles that ordinary elec-
tronic alarm systems should be circumvented during
normal operation of the facility, when supervisory staff
are more likely to be lax because they are accustomed
to false alarms [16]).

Security When ever more intrusion detection systems are
fielded, one would expect ever more attacks directed
at the intrusion detection system itself, to circumvent
it or otherwise render the detection ineffective. What
is the nature of these attacks, and how resilient is the
intrusion detection system to them?

Inter-Operability Asthe number of different intrusion de-
tection systems increase, to what degree can they inter-
operate and how do we ensure this?

Transparency How intrusive is the fielding of the intru-
sion detection system to the organisation employing
it? How many resources will it consume in terms of
manpower, etc?

While interest is being shown in some of these issues,
with a few notable exceptions—mainly [7]—they remain
largely unaddressed by the research community. This is
perhaps not surprising, since many of these questions are
difficult to formulate and answer. For a detailed and thor-
ough survey of research into intrusion detection systems to
date see [2].

This paper is concerned with one aspect of one of the
questions above, that of effectiveness. More specifically it
addresses the way in which the base-rate fallacy affects the
required performance of the intrusion detection system with
regard to false alarm rejection.

In what follows: section 3 gives a description of the base-
rate fallacy, section 4 continues with an application of the
base-rate fallacy to the intrusion detection problem, given
a set of reasonable assumptions, section 5 describes the im-
pact the previous results would have on intrusion detection
systems, section 6 considers future work, with section 7 con-
cluding the paper. Appendix A reproduces a base-rate fal-
lacy example in diagram form.

3 The Base-Rate Fallacy

The base-rate fallacy’ is one of the cornerstones of Bayesian
statistics, stemming as it does directly from Bayes’ famous

!The idea behind this approach stems from [13,14].

theorem that states the relationship between a conditional
probability and its opposite, i.e. with the condition trans-
posed:

P(A) - P(B|A)

P(4|B) = =20 M

Expanding the probability P(B) for the set of all n pos-
sible, mutually exclusive outcomes A we arrive at equa-
tion (2):

P(B) = 2": P(A;) - P(B|A:) (2)

Combining equations (1) and (2) we arrive at a generally
more useful statement of Bayes’ theorem:

P(4) - P(B|A) &
T, P(4:) P(BIA)

P(A|B) =

The base-rate fallacy is best described through exam-
ple.? Suppose that your doctor performs a test that is 99%
accurate, i.e. when the test was administered to a test popu-
lation all of whom had the disease, 99% of the tests indicated
disease, and likewise, when the test population was known
to be 100% free of the disease, 99% of the test results were
negative. Upon visiting your doctor to learn the results he
tells you he has good news and bad news. The bad news is
that indeed you tested positive for the disease. The good
news however, is that out of the entire population the rate
of incidence is only 1/10000, i.e. only 1 in 10000 people have
this ailment. What, given this information, is the probabil-
ity of you having the disease? The reader is encouraged to
make a quick “guesstimate” of the answer at this point.

Let us start by naming the different outcomes. Let S
denote sick, and —5, i.e. not S, denote healthy. Likewise, let
P denote a positive test result and =P denote a negative test
result. Restating the information above; given: P(P|S) =
0.99, P(—=P|—~S) = 0.99, and P(S) = 1/10000, what is the
probability P(S|P)?

A direct application of equation (3) above gives:

P(S)P(PIS) (4)
P(S) - P(P|S) + P(=S) - P(P|-S)

P(S|P) =

The only probability above which we do not immediately
know is P(P|-S). This is easily found though, since it is
merely 1 — P(—~P|-S) = 1% (likewise, P(=S) = 1 — P(§)).
Substituting the stated values for the different quantities in
equation (4) gives:

1/10000 - 0.99 B
1/10000 - 0.99 + (1 — 1/10000) - 0.01 _
=0.00980...~ 1% (5)

P(S|P) =

That is, that even though the test is 99% certain, your
chance of actually having the disease is only 1/100, because
the population of healthy people is much larger than the

2This example hinted at in [17].



population with the disease. (For a graphical representa-
tion, in the form of a Venn diagram, depicting the different
outcomes, turn to Appendix A). This result often surprises
people, ourselves included, and it is this phenomenon—that
humans in general do not take the basic rate of incidence, the
base-rate, into account when intuitively solving such prob-
lems of probability—that is aptly named “the base-rate fal-
lacy.”

4 The Base-Rate Fallacy in Intrusion Detection

In order to apply this reasoning in computer intrusion de-
tection we must first find the different probabilities, or if
such probabilities cannot be found, make a set of reasonable
assumptions regarding them.

4.1 Basic frequency assumptions

Let us for the sake of further argument hypothesize a figura-
tive computer installation with a few tens of workstations, a
few servers—all running UNix—and a couple of dozen users.
Such an installation could produce in the order of 1,000,000
audit records per day with some form of “C2” compliant log-
ging in effect, in itself a testimony to the need for automated
intrusion detection.

Suppose further that in such a small installation we
would not experience more than a few, say one or two, actual
attempted intrusions per day. Even though it is difficult to
get any figures for real incidences of attempted computer se-
curity intrusions, this does not seem to be an unreasonable
number.

The figures above are based on [11], and while the results
of that study would seem to indicate that indeed low false
alarm rates can be attained, one can raise the ob jection that
since the developers of the tested systems had prior access to
“training” data that was very similar to the later evaluation
data, the systems’ false alarm suppression capability was
not sufficiently tested. Another paper that discusses the
effectiveness of intrusion detection is [15]. Unfortunately it
is not applicable here.

Furthermore, assume that at this installation we do not
have the manpower to have more than one site security
officer—SSO for short—who probably has other duties, and
that the SSO, being only human, can only react to a rel-
atively low number of alarms, especially if the false alarm
rate is high.

Even though an intrusion could possibly affect only one
audit record, it is likely on average that it will affect a few
more than that. Furthermore, a clustering factor actually
makes our estimates more conservative, so it was deemed
prudent to include one. Using data from a previous study of
the trails that SunOS intrusions leave in the system logs [3],
we can estimate that ten audit records would be affected in
the average intrusion.

4.2 Calculation of Bayesian detection rates

Let I and —I denote intrusive, and non-intrusive behaviour
respectively, and A and —A denote the presence or absence
of an intrusion alarm. We start by naming the four possible
cases (false and true positives and negatives) that arise by
working backwards from the above set of assumptions:

Detection rate Or true positive rate. The probability
P(A|I), ie. that quantity that we can obtain when

testing our detector against a set of scenarios we know
represent intrusive behaviour.

False alarm rate The probability P(A|-I), the false pos-
itive rate, obtained in an analogous manner.

The other two parameters, P(—A|I), the False Negative
rate, and P(—A|—I), the True Negative rate, are easily ob-
tained since they are merely:

P(=A|I) =1~ P(A|I); P(~A|-I) = 1 — P(A|]-I) (6)
Of course, our ultimate interest is that both:

e P(I|A)—that an alarm really indicates an intrusion
(henceforth called the Bayesian detection rate), and

® P(—I|-A)—that the absence of an alarm signifies that
we have nothing to worry about,

remain as large as possible.
Applying Bayes’ theorem to calculate P(I|A) results in:

P(I) - P(AII) -
P(I)- P(A|I) + P(-I) - P(A|-I)

P(I4) =

Likewise for P(—I|-A):

B P(=I) - P(-A|-D)
P(-I|-4) = P(-D) - P(-4-D) + P(D) - P(~AD) &

These assumptions give us a value for the rate of inci-
dence of the actual number of intrusions in our system, and
its dual (10 audit records per intrusion, 2 intrusions per day,
and 1,000,000 audit records per day). Interpreting these as
probabilities:

1-108 _g
P = =2.1 .
) 1/2_10 0%, .

P(=I) =1 - P(I) = 0.99998
Inserting equation (9) into equation (7):

2-107%. P(A|I)

P(I|4) = g P(A|T) +0.99998 - P(A[-I)

(10)

Studying equation (10) we see the base-rate fallacy
clearly. By now it should come as no surprise to the reader,
since the assumptions made about our system makes it clear
that we have an overwhelming number of non-events (be-
nign activity) in our audit trail, and only a few events (in-
trusions) of any interest. Thus, the factor governing the
detection rate (2-107°) is completely dominated by the fac-
tor (0.99998) governing the false alarm rate. Furthermore,
since 0 < P(A|I) < 1, the equation will have its desired
maximum for P(A|I) = 1 and P(A|-I) = 0, which results
in the most beneficial outcome as far as the false alarm rate
is concerned. While reaching these values would be an ac-
complishment indeed, they are hardly attainable in practice.
Let us instead plot the value of P(I|A) for a few fixed val-
ues of P(A|I) (including the “best” case P(A|I) = 1), as a
function of P(A|-I) (see figure 1 on the following page). It
should be noted that both axes are logarithmic.
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Figure 1: Plot of Bayesian detection rate versus false alarm
rate

It becomes clear from studying the plot in figure 1 that
even for the unrealistically high detection rate 1.0 , we have
to have a very low false alarm rate (on the order of 1-107°)
for the Bayesian detection rate to have a value of 66%, i.e.
about two thirds of all alarms will be a true indication of in-
trusive activity. With a more realistic detection rate of, say,
0.7, for the same false alarm rate, the value of the Bayesian
detection rate is about 58%, nearing fifty-fifty. Even though
the number of events (intrusions/alarms) is still low, it is
our belief that a low Bayesian detection rate would quickly
“teach” the SSO to (un)safely ignore all alarms, even though
their absolute numbers would theoretically have allowed a
complete investigation of all alarms. This becomes espe-
cially true as the system grows; a 50% false alarm rate of
in total of 100 alarms would clearly not be tolerable. Note
that even quite a large difference in the detection rate does
not substantially alter the Bayesian detection rate, which
instead is dominated by the false alarm rate. Whether such
a low rate of false alarms is at all attainable is discussed in
section 5.

It becomes clear that, for example, a requirement of only
100 false alarms per day is met by a large margin with a false
alarm rate of 1-107°, With 10° “events” per day, we will
see only 1 false alarm per day, on average. By the time
our ceiling of 100 false alarms per day is met, at a rate of
1- 1072 false alarms, even in the best case scenario, our
Bayesian detection rate is down to around 2%,% by which
time no-one will care less when the alarm goes off.

Substituting (6) and (9) in equation (8) gives:

P(=I]-A) =
_ 0.99998 - (1 — P(A|-I)) -
099998 - (1 — P(A|-I)) +2-10-5 - (1 — P(A])) (1)

A quick glance at the resulting equation (11) raises no
cause for concern. The large P(—I) factor (0.99998) will
completely dominate the equation, giving it values near 1.0
for the values of P(A|-I) under discussion here, regardless
of the value of P(A|I).

3 Another way of calculating that differs from equation (10) is of
course to realise that 100 false alarms and only a maximum of 2
possible valid alarms gives: 3255 ~ 2%.

This is the base-rate fallacy in reverse, if you will, since
we have already demonstrated that the problem is that we
will set off the alarm too many times in response to non-
intrusions, combined with the fact that we do not have many
intrusions to begin with. Truly a question of finding a needle
in a haystack.

The author does not see how the situation underlying the
base-rate fallacy problem will change for the better in years
to come. On the contrary, as computers get faster they will
produce more audit data, while it is doubtful that intrusive
activity will increase at the same rate. In fact, it would have
to increase at a substantially higher rate for it to have any
effect on the previous calculations, and were it ever to reach
levels sufficient to have such an effect—say 30% or more—
the installation would no doubt have a serious problem on
its hands, to say the least!

5 Impact on Intrusion Detection Systems

As stated in the introduction, approaches to intrusion de-
tection can be divided into two major groups, policy-based,
and anomaly-based. The previous section developed re-
quirements regarding false alarm rates and detection rates
in intrusion detection systems in order to make them use-
ful in the stated scenario. This section will compare these
requirements with reported results on the effectiveness of
intrusion detection systems.

It can be argued that this reasoning applies mainly to
policy-based intrusion detection. In some cases anomaly-
based detection tries not to detect intrusions per se, but
rather to differentiate between two different subjects, flag-
ging anomalous behaviour in the hopes that it is indicative of
a stolen user identity for instance, see for example [9], which
even though it reports performance figures, is not directly
applicable here. However, we think the previous scenario
is useful as a description of a wide range of more “immedi-
ate,” often network-based, attacks, where we will not have
had the opportunity to observe the intruder for an extended
period of time “prior” to the attack.

5.1 ROC curve analysis

There are general results in detection and estimation the-
ory that state that the detection and false alarm rates are
linked [20], though the extent to which they are applicable
here is still an open question. Obviously, if the detection
rate is 1, saying that all events are intrusions, we will have
a false alarm rate of 1 as well, and conversely the same can
be said for the case where the rates are 0.4 Intuitively, we
see that by classifying more and more events as intrusive—
in effect relaxing our requirements on what constitutes an
intrusion—we will increase our detection rate, but also mis-
classify more of the benign activity, and hence increase our
false alarm rate.

Plotting the detection rate as a function of the false
alarm rate we end up with what is called a ROC—Receiver
Operating Characteristic—curve. (For a general introduc-
tion to ROC curves, and detection and estimation theory,
see [20].) We have already stated that the points (0;0) and
(1;1) are members of the ROC curve for any intrusion detec-
tor. Furthermore, the curve between these points is convex;
were it concave, we would do better to reverse our decision.

41f you call everything with a large red nose a clown, you’ll spot
all the clowns, but also Santa’s reindeer, Rudolph, and vice versa.
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Figure 3: ROC-curve for the first study

Nor can it contain any dips, as that would in effect indicate a
faulty, non-optimal detector, since a randomised test would
then be better. See “Assumed ROC” curve in figures 2 and 3
for the ROC curve that depicts our previous example.

We see that the required ROC curve has a very sharp
rise from (0;0) since we quickly have to reach acceptable
detection rate values (0.7) while still keeping the false alarm
rate under control.

5.2 Previous experimental intrusion detection evaluations

As previously mentioned, the literature is not overladen
with experimental results from tests of intrusion detection
systems. One recent evaluation performed by DARPA ex-
ists [11], but no comprehensive results have been published,
and the data is unavailable for independent evaluation be-
cause of U.S. export restrictions. We have chosen two recent
publications [10,21] on the effectiveness of several policy-
based methods, and one theoretically advanced treatise on
anomaly-based methods [7], on which to base our evaluation.

The first study [21] lists test results for six different in-
trusion detection methods that have been applied to traces
of system calls made into the operating system kernel by
nine different privileged applications in a UNIX environment.
Most of these traces were obtained from “live” data sources,
i.e. the systems from which they were collected were pro-
duction systems. The authors’ hypothesis is that short se-
quences of system calls exhibit patterns that describe nor-
mal, benign activity, and that different intrusion detection
mechanisms can be trained to detect abnormal patterns, and
flag these as intrusive. The researchers thus trained the in-
trusion detection systems using part of the “normal” traffic,
and tested their false alarm rate on the remaining “normal”
traffic. They then trained the systems on intrusive scenarios,
and inserted such intrusions into normal traffic to ascertain
the detection rate. The experimental method is thus close
to the one described in sections 3 and 4.

The second study [10], reports results from one of the
tools entered into the DARPA evaluation. The DARPA data
is supposedly modelling a realistic situation, having been
synthesized from several months’ long measurements on two
large computer sites. The author claims that this tool faired
well in competition with the other systems so evaluated®.
Interestingly the same tool has been applied (in a different
manner) to the data generated by the first study above,
which makes for an interesting comparison. Surprisingly, the
independent evaluation reports better results—by as much
as several orders of magnitude—than the author of the tool
himself reports.

The third study [7] is a treatise on the fundamental limits
of the effectiveness of intrusion detection. The authors con-
structs a model of the intrusive and normal process and in-
vestigate the properties of this model from an anomaly intru-
sion detection perspective under certain assumptions. Their
approach differs from ours in that they do not provide any
estimates of the parameters in their model, opting instead
to explore the limits of effectiveness when such information
is unavailable. Of greatest interest here is their conclusion
in which the authors plot experimental data for two imple-
mentations, one a frequentist detector that—it is claimed—
is close to optimal under the given circumstances, and an
earlier tool designed by the authors, Wisdom & Sense [19].

Lack of space precludes a more detailed presentation of
these experiments, and the interested reader is referred to
the cited papers.

The results from the three studies above have been plot-
ted in figures 2 and 3. Where a range of values were given in
the original presentation, the best—most “flattering” if you
will—value was chosen. Furthermore, since not all the work
reffered to provided actual numerical data, some points are
based on our interpretation of the presented values. We feel

5In the words of the author “We can see from the figure that our
detection model has the best overall performance...”



that these are accurate enough for the purpose of giving the
reader an idea of the performance of the systems.

The cited work can be roughly divided into two classes
depending on the minimum false alarm rate values that are
presented, and hence, for clarity, the presentation has been
divided into figures, where the first (figure 2) presents the
first class, with larger values for the false alarm rate. In
the figure, “Ripper” denotes the original author’s overall
DARPA results, “Helman frequentist,” and “W&S” denote
the anomaly detection results. It is interesting, especially in
the light of the strong claims made by the authors of these
evaluations, to note that all of the presented false alarm rates
are several orders of magnitude larger than the requirements
put forth in section 4.

The second class of detectors, depicted in figure 3, con-
sists of the average results of Ripper, and a high perfor-
mance Hidden Markov Model detector (labeled “HMM?” in
the figure) tested by Warrander et. al. Here the picture is
less clear. In these experiments the specific application of
Ripper performs admirably. The authors report false alarm
results close to zero for lower detection rates, with one per-
formance point nearly overlapping our required performance
point. The HMM detector is also close to what we would
require. It is more difficult to generalize these results, since
they are based on one method of data selection, and the au-
thors do not make as strong a claim as those made for the
previous set of detectors.

6 Future Work

One sticking point is the basic probabilities that the previ-
ous calculations are based on. These probabilities are sub-
jective at present, but future work should include measure-
ment either to attempt to calculate these probabilities from
observed frequencies—the frequentist approach—or to de-
duce these probabilities from some model of the intrusive
process and the intrusion detection system—the objectivist
approach. The latter would in turn require real world ob-
servation to formulate realistic parameters for the models.

Furthermore, this discourse treats the intrusion detection
problem as a binary decision problem, i.e. that of deciding
whether there has been an “intrusion” or not. The work
presented does not differentiate between the different kinds
of intrusions that can take place, and nor does it recognise
that different types of intrusions are not equally difficult or
easy to detect. Thus on a more detailed level, the intrusion
detection problem is not a binary but rather an n-valued
problem.

Another area that needs attention is that of the SSO’s
capabilities. How does the human-computer interaction take
place, and precisely which Bayesian detection rates would an
SSO tolerate under what circumstances for example?

The other parameters discussed in the introduction (ef-
ficiency, etc.) also need further attention.

7 Conclusions

This paper aims to demonstrate that intrusion detection in
a realistic setting is perhaps harder than previously thought.
This is due to the base-rate fallacy problem, because of
which the factor limiting the performance of an intrusion
detection system is not the ability to identify behaviour cor-
rectly as intrusive, but rather its ability to suppress false
alarms. A very high standard, less than 1/100,000 per

“event” given the stated set of circumstances, will have to
be reached for the intrusion detection system to live up to
these expectations as far as effectiveness is concerned.

The cited studies of intrusion detector performance that
were plotted and compared indicate that anomaly-based
methods may have a long way to go before they can reach
these standards, since their false alarm rates are several or-
ders of magnitude larger than what we demand. When we
come to the case of misuse-based detection methods the pic-
ture is less clear. One detector performs well in one study—
and meets our expectations—but is much less convincing in
another, where it performs on a par with the anomaly-based
methods studied. Whether some of the more difficult de-
mands, such as the detection masqueraders or the detection
of novel intrusions, can be met without the use of anomaly-
based intrusion detection is still an open question.

Much work still remains before it can be demonstrated
that current IDS approaches will be able to live up to real
world expectations of effectiveness. However, we would like
to stress that, the present results notwithstanding, an equal
amount of work remains before it can be proven that they
cannot live up to such high standards.
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Appendix A Venn Diagram of the Base-Rate Fallacy Example

The Venn diagram in figure 4 depicts the situation in the
medical diagnostic example of the base-rate fallacy given
earlier.
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Figure 4: Venn diagram of medical diagnostic example

Although for reasons of clarity the Venn diagram is not
to scale it clearly demonstrates the basis of the base-rate
fallacy, i.e. that the population in the outcome S is much
smaller than that in =S and hence, even though P(P|S) =
99% and P(—P|-S) = 99%, the relative sizes of the missing
1% in each case—areas 2) and 4) in the diagram—are very
different.

Thus when we compare the relative sizes of the four num-
bered areas in the diagram, and interpret them as probabil-
ity measures, we can state the desired probability, P(S|P)—
i.e. “What is the probability that we are in area 3) given that
we are inside the P-area?” It may be seen that, area 3) is
small relative to the entire P-area, and hence, the fact that
the test is positive does not say much, in absolute terms,
about our state of health.
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Abstract

In this paper we present a new approach for network intrusion
detection based on concise specifications that characterize nor-
mal and abnormal network packet sequences. Our specification
language is geared for a robust network intrusion detection by
enforcing a strict type discipline via a combination of static and
dynamic type checking. Unlike most previous approaches in net-
work intrusion detection, our approach can easily support new
network protocols as information relating to the protocols are
not hard-coded into the system. Instead, we simply add suit-
able type definitions in the specifications and define intrusion pat-
terns on these types. We compile these specifications into a high-
performance network intrusion detection system. Important com-
ponents of our approach include efficient algorithms for pattern-
matching and information aggregation on sequences of network
packets. In particular, our techniques ensure that the matching
time is insensitive to the number of patterns characterizing differ-
ent network intrusions, and that the aggregation operations typi-
cally take constant time per packet. Our system participated in an
intrusion detection evaluation organized by MIT Lincoln Labs,
where our system demonstrated its effectiveness (96% detection
rate on low-level network attacks) and performance (real-time de-
tection at 500Mbps), while producing very few false positives
(0.05 to 0.1 per attack).

1 Introduction

Network-based attacks have been increasing in frequency and
severity over the past several years. Consequently, many research
efforts have focussed on network intrusion detection techniques
aimed at identifying such attacks. This paper describes a new ap-
proach to detect such attacks. The centerpiece of our approach
is a domain-specific language that enables concise specification
of network packet contents under normal as well as attack con-
ditions. These specifications are compiled to produce a high-
performance network intrusion detection system. The main ben-
efits of our approach are:

o concise, easy-to-develop intrusion specifications. Using our
domain-specific language, we can specify network-based at-
tacks or other anomalous behavior easily and concisely. We
have encoded the signatures for most low-level network
probes and attacks using a specification that is about five lines
each. Such conciseness contributes to increased confidence in
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the correctness of specifications, and leads to reduced devel-
opment and debugging efforts.

o high-speed, large-volume monitoring. A central component
of our approach is a fast pattern matching algorithm whose
runtime is insensitive to the number of attack signatures. This
algorithm ‘ensures that the same packet field is never exam-
ined more than once, regardless of the number of patterns
that refer to the field. This factor, combined with efficient
data aggregation mechanisms, enable our system to support
real-time performance at up to 500Mbps even when run on a
standard PC.

e robust and extensible. Since an attacker is likely to attempt to
disable the intrusion detection system by any means possible,
it is particularly important for the system to be robust under
all traffic conditions, e.g., malformed network packets should
not crash the system. We have developed a novel type system
that enables compact declarations of network packet struc-
ture and the constraints on their contents, so that these con-
ditions can be automatically checked at compile-time and/or
runtime without programmer involvement. Unlike previous
approaches such as [MJ92] that hardcode network protocol
specifics into the compiler for packet-filtering rules, our ap-
proach achieves robustness without compromising extensibil-
ity, as it is very easy to specify new packet structures (and
thus be able to deal with new protocols and network services)
without any modifications to the compiler.

o comprehensive evaluation of performance. This paper
presents a comprehensive evaluation of our IDS based on a
large set of intrusion training and test data provided by MIT
Lincoln Labs [GLCFKWZ98]. The data covers a period of
seven weeks, with each day’s data in the range of 0.4 to
1.2GB. The evaluation results indicate that our approach is
very effective (e.g., detects 96% of all network protocol re-
lated attacks in the test data), fast (approximate runtime of 15
seconds per GB of network traffic), and uses very little mem-
ory (less than 1MB).

1.1 Organization of the Paper

The rest of this paper is organized as follows. In Section 2 we de-
scribe our specification language. We illustrate this language with
several examples in Section 3. An overview of our implementa-
tion is given in Section 4. Detailed study of the effectiveness
and performance of our system are presented in Sections 5 and 6.
Comparison with related work is presented in Section 7. We then
conclude the paper with Section 8.

2 Specification Language

Intrusion specifications consist of variable and type declarations,
followed by a list of rules. The rules are of the form pat —
action, where pat captures a pattern on sequences of network
packets, and action denotes the actions to be taken when we have
a match for pat. Each of these components of the language are
described in more detail below. We confine these descriptions to
features that are unique to our language.



