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PREFACE

Chemical reactors are unquestionably the most vital parts of many chemical, biochemical,
polymer, and petroleum processes because they transform raw materials into valuable
chemicals. A vast variety of useful and essential products are generated via reactions
that convert reactants into products. Much of modern society is based on the safe,
economic, and consistent operation of chemical reactors.

In the petroleum industry, for example, a significant fraction of our transportation
fuel (gasoline, diesel, and jet fuel) is produced within process units of a petroleum refinery
that involve reactions. Reforming reactions are used to convert cyclical saturated
naphthenes into aromatics, which have higher octane numbers. Light C4 hydrocarbons
are alkylated to form high-octane C8 material for blending into gasoline. Heavy
(longer-chain) hydrocarbons are converted by catalytic or thermal cracking into lighter
(shorter-chain) components that can be used to produce all kinds of products. The unsatu-
rated olefins that are used in many polymerization processes (ethylene and propylene) are
generated in these reactors. The polluting sulfur components in many petroleum products
are removed by reacting them with hydrogen.

The chemical and materials industries use reactors in almost all plants to convert basic
raw materials into products. Many of the materials that are used for clothing, housing,
automobiles, appliances, construction, electronics, and healthcare come from processes
that utilize reactors. Reactors are important even in the food and beverage industries,
where farm products are processed. The production of ammonia fertilizer to grow our
food uses chemical reactors that consume hydrogen and nitrogen. The pesticides and
herbicides we use on crop fields and orchards aid in the advances of modern agriculture.
Some of the drugs that form the basis of modern medicine are produced by fermentation
reactors. It should be clear in any reasonable analysis that our modern society, for better or
worse, makes extensive use of chemical reactors.

Many types of reactions exist. This results in chemical reactors with a wide variety of
configurations, operating conditions, and sizes. We encounter reactions that occur in
solely the liquid or the vapor phase. Many reactions require catalysts (homogeneous if
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the catalyst is the same phase as the reactants or heterogeneous if the catalyst has a differ-
ent phase). Catalysts and the thermodynamic properties of reactants and products can lead
to multiphase reactors (some of which can involve vapor, multiple liquids, and solid
phases). Reactions can be exothermic (producing heat) or endothermic (absorbing heat).
An example of the first is the nitration of toluene to form TNT. A very important
example of the second is steam—methane reforming to produce synthesis gas.

Reactors can operate at low temperature (e.g., C4 sulfuric acid alkylation reactors run at
10°C) and at high temperatures (hydrodealkylation of toluene reactors run at 600°C).
Some reactors operate in a batch or fed-batch mode, others in a continuous mode, and
still others in a periodic mode. Beer fermentation is conducted in batch reactors.
Ammonia is produced in a continuous vapor-phase reactor with a solid “promoted”
iron catalyst.

The three classical generic chemical reactors are the batch reactor, the continuous
stirred-tank reactor (CSTR), and the plug flow tubular reactor (PFR). Each of these
reactor types has its own unique characteristics, advantages, and disadvantages. As the
name implies, the batch reactor is a vessel in which the reactants are initially charged
and the reactions proceed with time. During parts of the batch cycle, the reactor
contents can be heated or cooled to achieve some desired temperature—time trajectory.
If some of the reactant is fed into the vessel during the batch cycle, it is called a “fed-batch
reactor.” Emulsion polymerization is an important example. The reactions conducted
in batch reactors are almost always liquid-phase and typically involve slow reactions
that would require large residence times (large vessels) if operated continuously. Batch
reactors are also used for small-volume products in which there is little economic
incentive to go to continuous operation. In some systems batch reactors can provide
final product properties that cannot be achieved in continuous reactors, such as molecular
weight distribution or viscosity. Higher conversion can be achieved by increasing batch
time. Perfect mixing of the liquid in the reactor is usually assumed, so the modeling of
a batch reactor involves ordinary differential equations. The control of a batch reactor
is a “servo” problem, in which the temperature and/or concentration profiles follow
some desired trajectory with time.

The CSTR reactor is usually used for liquid-phase or multiphase reactions that have
fairly high reaction rates. Reactant streams are continuously fed into the vessel, and
product streams are withdrawn. Cooling or heating is achieved by a number of different
mechanisms. The two most common involve the use of a jacket surrounding the vessel
or an internal coil. If high conversion is required, a single CSTR must be quite large
unless reaction rates are very fast. Therefore, several CSTRs in series are sometimes
used to reduce total reactor volume for a given conversion. Perfect mixing of the liquid
in the reactor is usually assumed, so the modeling of a CSTR involves ordinary differential
equations. The control of a CSTR or a series of CSTRs is often a “regulator” problem, in
which the temperature(s) and/or concentration(s) are held at the desired values in the
face of disturbances. Of course, some continuous processes produce different grades of
products at different times, so the transition from one mode of operation to another is a
servo problem.

The PFR tubular reactor is used for both liquid and gas phases. The reactor is a long
vessel with feed entering at one end and product leaving at the other end. In some appli-
cations the vessel is packed with a solid catalyst. Some tubular reactors run adiabatically
(i.e., with no heat transferred externally down the length of the vessel). The heat generated
or consumed by the reaction increases or decreases the temperature of the process
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material as it flows down the reactor. If the reaction is exothermic, the adiabatic
temperature rise may produce an exit temperature that exceeds some safety limitation.
It may also yield a low reaction equilibrium constant that limits conversion. If the reaction
is endothermic, the adiabatic temperature change may produce reactor temperatures so
low that the resulting small chemical reaction rate limits conversion.

In these cases, some type of heat transfer to or from the reactor vessel may be required.
The reactor vessel can be constructed like a tube-in-shell heat exchanger. The process fluid
flows inside the tubes, which may contain catalyst, and the heating/cooling medium is on
the shell side. Variables in a PFR change with both axial position and time, so the
modeling of a tubular reactor involves partial differential equations. The control of a
PFR can be quite challenging because of the distributed nature of the process (i.e.,
changes in temperature and composition variables with length and sometime radial
position). Tubular reactor control is usually a regulator problem, but grade transitions
can lead to servo problems in some processes.

The area of reactor design has been widely studied, and there are many excellent text-
books that cover this subject. Most of the emphasis in these books is on steady-state oper-
ation. Dynamics are also considered, but mostly from the mathematical standpoint
(openloop instability, multiple steady states, and bifurcation analysis). The subject of
developing effective stable closedloop control systems for chemical reactors is treated
only very lightly in these textbooks. The important practical issues involved in providing
reactor control systems that achieve safe, economic, and consistent operation of these
complex units are seldom understood by both students and practicing chemical engineers.

The safety issue is an overriding concern in reactor design and control. The US
Chemical Safety Board (CSB) published a report in 2002 in which they listed 167
serious incidents involving uncontrolled chemical reactivity between 1980 and 2001.
There were 108 fatalities as a result of 48 of these incidents. The CSB has a number of
reports on these and more recent incidents that should be required reading for anyone
involved in reactor design and control. In 2003 the American Institute of Chemical Engin-
eers published Essential Practices for Managing Chemical Reactivity Hazard, which is
well worth reading.

There are hundreds of papers dealing with the control of a wide variety of chemical
reactors. However, there is no textbook that pulls the scattered material together in a
cohesive way. One major reason for this is the very wide variety in types of chemistry
and products, which results in a vast number of different chemical reactor configurations.
It would be impossible to discuss the control of the myriad of reactor types found in the
entire spectrum of industry. This book attempts to discuss the design and control of
some of the more important generic chemical reactors.

The development of stable and practical reactors and effective control systems for the
three types of classical reactors are covered. Notice that “reactors” are included, not just
control schemes. Underlying the material and approaches in this book is my basic philos-
ophy (theology) that the design of the process and the process equipment has a much
greater effect on the successful control of a reactor than do the controllers that are hung
on the process or the algorithms that are used in these controllers. This does not imply
that the use of models is unimportant in reactor control, since in a number of important
cases they are essential for achieving the desired product properties.

The basic message is that the essential problem in reactor control is temperature
control. Temperature is a dominant variable and must be effectively controlled to
achieve the desired compositions, conversions, and yields in the safe, economic, and
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consistent operation of chemical reactors. In many types of reactors, this is achieved by
providing plenty of heat transfer area and cooling or heating medium so that dynamic
disturbances can be handled. Once temperature control has been achieved, providing base-
level stable operation, additional objectives for the control system can be specified. These
can be physical property specifications (density, viscosity, molecular weight distribution,
etc.) or economic objectives (conversion, yield, selectivity, etc.).

The scope of this book, like that of all books, is limited by the experience of the author.
It would be impossible to discuss all possible types of chemical reactors and presumptuous
to include material on reactors with which I have little or no familiarity. Despite
its limitations, I hope the readers find this book interesting and useful in providing
some guidance for handling the challenging and very vital problems of chemical
reactor control.

The many helpful comments and suggestions of Michael L. Luyben are gratefully
acknowledged.

WILLIAM L. LUYBEN
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CHAPTER 1

REACTOR BASICS

In this chapter we first review some of the basics of chemical equilibrium and reaction
kinetics. We need to understand clearly the fundamentals about chemical reaction rates
and chemical equilibrium, particularly the effects of temperature on rate and equilibrium
for different types of reactions. Reactions are generally catagorized as exothermic
(releasing energy) or endothermic (requiring energy), as reversible (balance of reactants
and products) or irreversible (proceeding completely to products), and as homogeneous
(single-phase) or heterogeneous (multiphase).

One major emphasis in this book is the focus of reactor design on the control of temp-
erature, simply because temperature plays such a dominant role in reactor operation.
However, in many reactors the control of other variables is the ultimate objective or deter-
mines the economic viability of the process. Some examples of these other properties
include reactant or product compositions, particle size, viscosity, and molecular weight
distribution. These issues are discussed and studied in subsequent chapters.

Many polymer reactions, for example, are highly exothermic, so the temperature
control concepts outlined in this book must be applied. At the same time, controlling
just the temperature in a polymer reactor may not adequately satisfy the economic objec-
tives of the plant, since many of the desired polymer product properties (molecular weight,
composition, etc.) are created within the polymerization reactor. These key properties
must be controlled using other process parameters (i.e. vessel pressure in a polycondensa-
tion reactor or chain transfer agent composition in a free-radical polymerization reactor).

Many agricultural chemicals (pesticides, fungicides, etc.), for another example, are
generated in a series of often complex batch or semibatch reaction and separation steps.
The efficacy of the chemical often depends on its ultimate purity. Operation and control
of the reactor to minimize the formation of undesirable and hard-to-separate byproducts
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