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Preface

The methods of flow visualization are being used by engineers and scientists working in quite
different fields of fluid flow research and development. Therefore, flow visualization has the character
of an interdisciplinary experimental tool. The International Symposia on Flow Visualization reflect
the need for an exchange of information on the development and application of these tools. The scope
of this Second International Symposium was to emphasize the applicability of the methods for a great
number of different problems and to point out the progress that has been made in various fields of
flow research because of visualization.

The call for papers had resulted in a wide response. The Symposium was attended by 250
participants coming from 30 different countries. Because of the large number of contributed papers
the authors were asked to restrict the length of their manuscripts to 5 or 6 pages. It is obvious that a
paper of this length cannot provide all the information that a scientist would like to communicate of
his or her work. The editor was grateful that almost all authors were kind enough to follow this
suggestion for a reduction of the written text and so contributed to the possibility of producing these
proceedings.

The Second International Symposium on Flow Visualization was organized by Institut fir
Thermo- und Fluiddynamik der Ruhr-Universitdt Bochum in cooperation with Verein Deutscher
Ingenieure (VDI), the International Measurement Confederation (IMEKO), the American Society of
Mechanical Engineers (ASME), the American Society of Civil Engineers (ASCE), and Unikontakt-Uni-
versity/Industry Liaison Bureau Bochum.

The organizers are grateful to Deutsche Forschungsgemeinschaft (DFG), Minister fiir Wissen-
schaft und Forschung des Landes Nordrhein, Westfalen, and Gesellschaft der Freunde, Ruhr-
Universitdt Bochum for financial support of the symposium, and to all members of the Institut fir
Thermo- und Fluiddynamik who helped beyond the call of duty to make the symposium successful
and informative.

W. Merzkirch
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Optical Methods in Combustion
Research

F. J. WEINBERG
Imperial College, London SW 7, England

The presentation is structured around applications to com-
bustion systems rather than reviewing the methods themselves,
The special constraints and opportunities which apply to
flow visualisation in the vicinity of flames and in flamm-
able mixtures are discussed. Combustion systems are then
broadly classified into major categories, in terms of their
structure and refractive index fields. The use of optical
methods for elucidating the underlying fundamental phenomena,
for the measurement of their propagation velocities and for
the detailed study of their temperature and velocity fields
is illustrated by drawing on an extensive range of examples.

Introduction

Professor Merzkirch, who is himself doing some interesting work in this field,
requested particularly that attention should be focused on applications

rather than methods. My talk * can therefore in no sense be regarded as a
review of optical methods but will concentrate instead on their uses in
combustion and the particular constraints and opportunities which arise in
the study of flame processes. Since specific systems are mentioned only
by way of illustrations, I hope I may be forgiven if I appear to lean too

heavily on examples chosen from my own work.

In the present context, the term 'optical methods" excludes spectroscopy and

all forms of excitation. We shall be confining our attention in the main to

* Because of the necessary restrictions on length, this article is little
more than an abstract of the opening address. Space does not permit any
of the large number of slides shown to be reproduced here.
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methods based on light from external sources interacting with phase objects

- i.e. refractive index fields - and small particles. Even so, the number
of optical systems,which range from the earliest applications of shadow-
graphy to sophisticated laser Doppler anemometry signal processingis so large
that it would be perfectly possible to take up all the available space with
an incomplete list of references. A short-list of some relevant reviews and

texts is appended {1 - 13},

Constraints and Opportunities

It is of course possible to carry out certain studies relevant to combustion
in cold flow models, Methods of this kind also have a venerable history
{e.g. see ref.14} but will not be further discussed here because they do not

differ in essence from other forms of flow visualisation.

Some constraints become immediately obvious as soon as we consider standard
flow visualisation methods {15} in relation to flammable mixtures. Thus
methods based on the addition of energy to premixed reactants are likely to
result in premature ignition. For example the use of electric sparks

for flow tracing will ignite a stoichiometric hydrocarbon air mixture as

soon as the energy dissipated approaches 0.2 mJ - and less than 1/10 of that
amount for more vigorous mixtures (e.g. H2/03). These energy levels are
sufficient to produce a continuously propagating flame ; much smaller
amounts suffice to produce local perturbations. In general, flames are
exceedingly sensitive to interference. Probes, for example, should not be
used in the vicinity of flame reaction zones because they interact with them
thermally, aerodynamically and chemically. Even smokes and fine particles
are not above suspicion if they are not used with appropriate precautions.
Indeed, smokes which dissociate at a particular temperature (e.g. ammonium
chloride) as they approach the flame front have been used to record its
instantaneous shape during turbulent fluctuations by photography of scattered
light at short exposure times. Flames also interact with small particles by
way of thermo-mechanical effects engendered by the steep temperature gradients
encountered in combustion zones {16}. It is therefore necessary, when select-—
ing the size of particle tracers for burning velocities within a given range,
to take into account the thermo-mechanical error limit in addition to the

accelerational lag limit {17}.

In general, flames are characterised by large changes in temperature, composi-

tion and velocity occurring over exceedingly small distances - fractions of



millimetres in the case of laminar premixed flames (see below). Hence

very small errors in the location of a point measurement can correspond to
very large variations in velocity, temperature or composition. The problem

is compounded by the difficulty of arranging for even a burner-stabilised

flame to be absolutely stationary on that magnitude of distance scale. For
example the mapping out of a velocity field, one point at a time, by laser
Doppler anemometry can be made all but impossible by quite slow flame fluctu-
ations which cause the point of measurement to move through different perts
of the flame structure. This confers advantages on methods such as photo-
graphing particle tracks by temporally interrupted illumination.which yield
an almost instantaneous record of velocity vectors. Freezing flame movement
in such a manner does not omit any essential information as the front is
merely drifting along or fluctuating slowly in a quasi steady state. In order
to obviate the complementary limitations of velocimetry by laser fringe
anemometry and by photographic particle tracking, a family of optical
systems has recently been developed {18} which allows both types of measure-
ment to be obtained simultaneously over extended test regions. It uses an
array of cylindrical lenses and a simple beam splitter to produce a thin sheet
of light from a powerful CW laser which is broken into fine interference
fringes in its plane whilst being interrupted at a known frequency by a

chopper.

Additional problems can arise in turbulent flames. Thus in laser Doppler
anemometry the outer flame can act as a fluctuating convoluted phase object
which interacts with the test beams. This has been illustrated experimental-
ly by Hong et al. {19} who recorded an apparent velocity of a particle held
stationary at the point of intersection of the two beams within a turbulent
flame. There are in fact two effects responsible for such errors, one due to
the changing differential phase difference between the two beams, the other
due to varying deflections, both of which cause the fringe grid to move in
response to the velocity of the boundary. The authors provide a theoretical

analysis of these effects and suggest methods of correction, where necessary.

On the asset side, @& flame can be regarded as "its own energy source for
flow tracing". A few special methods are based on some particular exploita-
tion of the high temperature - e.g. the use of sodium tracers which provide
photographable yellow flashes or streaks beyond the flame front. More gen-
erally, most of our insight into the basic processes which underlie flame

phenomena is due to our ability to visualise by optical methods the otherwise,



invisible changes in transparent gases which accompany the evolution of heat
and combustion products. Here the extremely steep refractive index gradients
become our greatest ally. Very often we do not have to use tracers because
nature provides its own in the form of pockets of hot product gases or the
flame front itself. Only in the related fields of plasma phenomena and

shock and detonation waves do the objects of study provide their own phase
boundaries. Unlike in these, however, the effects of free electrons and of
pressure changes are not important parameters in the refractive index fields
associated with the structure of most combustion phenomena. It may be help-

ful to classify flamesinto their major categories.

Flame Processes and their Optical Structure

The similarity in appearance of flames disguises some profound differences in
mechanism. The major types are the four permutations between initially pre-
mixed and initially separate reactants with the two conditions of laminar and
turbulent flow. The flames in initially separate reactants occur in the inter—
face between fuel and oxidant. The reactants have to mix by diffusion
(laminar or turbulent) before they can react. The mixing process, being
much slower than the rate of reaction, therefore controls the whole phenomen-
on and such flames are accordingly termed "diffusion flames". The flame
surface occurs close to the stoichiometric contour and the temperature there
approaches the value corresponding to stoichiometric fuel/air ratio. In
traversing the flame orthogonally, the refractive index profile therefore
moves from its value in the cold oxidant to that in the cold fuel via a steep
valley in between. Since the deflection ofalight beam parallel to the flame
is proportional to the refractive index gradient, there are two positions in
the flame giving rise to maximum deflection. These deflections occur in
opposite directions - each towards its cold reactant reservoir. Accordingly
there are two "schlieren images'" (unless the optical system suppresses one)
and four positions of maximum marking in shadowgraphy {3}. Although temp-
erature tends to be the dominant variable, refractive index is of course also
affected by composition. In the case of diffusion flames it is generally
assumed that fractional change in composition corresponds to fractional change
in temperature. Such an approximation,which reduces the variation to a
single parameter, cannot be absolutely correct since it presupposes a single
overall reaction, constant specific heat and diffusion coefficients equal to
one another and to thermal diffusivity. However it is often acceptable

because of the dominance of thermal effects. In the case of heterogeneous



