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PREFACE

This book is a revision of the third edition, published in 1974. That edition has served,
just as the first two editions did, as a textbook for a one-term introductory course in the
theory and applications of functions of a complex variable. This revision preserves the
basic content and style of the earlier editions, the first two of which were written by
Ruel V. Churchill alone.

In this edition the authors have improved the exposition by making the examples
more prominent in the text and by redrawing and adding a number of figures. The
material on integrals and residues and their applications is now reached earlier, and the
chapter on mapping by elementary functions leads more directly into the chapters on
conformal mapping and its applications. To mention some other improvements, the
sections on finding roots of complex numbers and calculating residues of functions at
isolated singular points have been completely rewritten with special attention paid to
the understanding of concepts and less reliance on formulas.

As was the case with the earlier editions, the first objective of this edition is to
develop in a rigorous and self-contained manner those parts of the theory which are
prominent in the applications of the subject. The second objective is to furnish an
introduction to applications of residues and conformal mapping. Special empbhasis is
given to the use of conformal mapping in solving boundary value problems which
arise in studies of heat conduction, electrostatic potential, and fluid flow. Hence
the book may be considered as a companion volume to the authors’ “Fourier Series
and Boundary Value Problems” and Ruel V. Churchill’s “Operational Mathematics,”
in which other classical methods for solving boundary value problems are
treated. The latter book also contains applications of residues in connection with
Laplace transforms.

The first nine chapters of this book, with various substitutions from the remaining
chapters, have for many years formed the content of a 3-hour course given each term
at The University of Michigan. The classes have consisted mainly of seniors and
graduate students majoring in mathematics, engineering, or one of the physical
sciences. The students have usually completed one term of advanced calculus. Some
of the material is not covered in the lectures and is left for students to read on their

ix
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own. If mapping by elementary functions and applications of conformal mapping are
desired earlier in the course, one can skip to Chapters 7, 8, and 9 immediately after
Chapter 3 on elementary functions.

Most of the basic results are stated as theorems, followed by examples and exer-
cises which illustrate those results. A bibliography of other and, in many cases, more
advanced books is provided in Appendix 1. A table of conformal transformations useful
in applications appears in Appendix 2.

In preparing this revision, the authors have taken advantage of suggestions from
a variety of people, especially Douglas G. Dickson, who suggested improvements in
the treatment of antiderivatives. The authors are also indebted to their editors, John J.
Corrigan, who provided a number of anonymous reviews of both the last edition and
the present one in manuscript form, and Peter R. Devine, who saw this edition through
its final stages.

Ruel V. Churchill
James Ward Brown
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CHAPTER

ONE
COMPLEX NUMBERS

In this chapter we survey the algebraic and geometric structure of the complex number
system. We assume various corresponding properties of real numbers to be known.

1. Definition

Complex numbers z can be defined as ordered pairs
(1) z=(x,y)

of real numbers x and y, with operations of addition and multiplication to be specified
below. It is customary to identify the pairs (x,0) with the real numbers x. The set
of complex numbers thus includes the real numbers as a subset. Complex numbers of
the form (0,y) are called pure imaginary numbers. The real numbers x and y in
expression (1) are known as the real and imaginary parts of z, respectively; and
we write

(2) Re z = x, Imz =y.

Two complex numbers (x;, y,) and (x,, y,) are said to be equal whenever they have
the same real parts and the same imaginary parts. That is,

3) (e, y1) = (x2, ) if and only if X =xand y, = y,.

The sum z, + z, and product z,z, of two complex numbers z, = (x,,y,) and
z; = (x2,y,) are defined by the equations

(4) L, y) + (k. y2) = (6 + x5, 3y + o),

(5) (e y1) G2, ¥2) = (ixs = yiya, yixs + x30).

In particular, (x,0) + (0,y) = (x,y) and (0, 1) (y,0) = (0, y); hence
(6) (,y) = (x,0) + (0, 1) (y,0).

Note that the operations defined by equations (4) and (5) become the usual opera-
tions of addition and multiplication when restricted to the real numbers:

1



2 COMPLEX VARIABLES AND APPLICATIONS SEC. 2

(x1,0) + (x2,0) = (x; + x,, 0),
(xho) (xz,O) = (Xlxz, 0)-

The complex number system is thus a natural extension of the real number system.
Thinking of a real number as either x or (x,0) and letting i denote the pure
imaginary number (0, 1), we can rewrite equation (6) as

(7) (x,y) = x + iy.*
Also, with the convention z*> = zz, z> = 7%z, etc., we find that
i’ =1(0,1)(0,1) = (—1,0);
that is, = -1.
In view of expression (7), equations (4) and (5) become
(8) G+ diyn) + (g + i) = (0 + %) + i + y2),
9) (r + iy) O + iy2) = (xp = yiya) + iix + x1y2).

Observe that the right-hand sides of these equations can be obtained by formally
manipulating the terms on the left as if they involved only real numbers and by
replacing i* by —1 when it occurs.

2. Algebraic Properties

Various properties of addition and multiplication of complex numbers are the same as
for real numbers. We list here the more basic of these algebraic properties and verify
a few of them.

The commutative laws

(1) 2] + 2; = 2 + 21 212y = ZpZ)
and the associative laws
(2) (21 + 20 + 3= 2 + (2, + z3), (2122)z3 = 2)(2523)

follow easily from the definitions of addition and multiplication of complex numbers
and the fact that real numbers obey these laws. For example, if

zy = (x, 1) and z; = (%2, ),
then
it = 0,y) + 0,0) = +x, 3+ )= o+ x, 3+ y)
= (x,y2) + (xi,3) =2 + z,.
Verification of the rest of the above laws, as well as the distributive law
(3) z2i(zy + z3) = 212, + 223,
is left to the exercises.

*In electrical engineering the symbol j is used instead of i.
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According to the commutative law for multiplication, iy = yi; hence it is permis-
sible to write either

z=x+ly or z=Xx + yi.

Also, because of the associative laws, a sum z; + z, + z; or a product z,z,z; is well
defined without parentheses, just as it is with real numbers.

The additive identity 0 = (0, 0) and the multiplicative identity 1 = (1, 0) for real
numbers carry over to the entire complex number system. That is,

(4) z+ 0=z and z- 1=z

for every complex number z. Furthermore, 0 and 1 are the only complex numbers with
such properties. To establish the uniqueness of 0, we suppose that (, v) is an additive
identity, and we write

(x,y) + (u,v) = (x,y)
where (x,y) is any comiplex number. It follows that
x+u=x and ytuv=y;

that is, # = 0 and v = 0. The complex number 0 = (0,0) is therefore the only
additive identity. A similar method can be used to show that 1 is unique as a multi-
plicative identity.

There is associated with each complex number z = (x, y) an additive inverse

(5) —z = (-x,-y)

which satisfies the equation z + (—z) = 0. Moreover, there is only one additive in-
verse for any given z. Additive inverses are used to define subtraction:

(6) 2y - =2zt (_22)-
Soifz, = (x,y,) and z, = (x2,y,), then
(7) 721 =z, = (X — xy, Y= y) = —x) + i(y, — y).

Likewise, for any nonzero complex number z = (x, y), there is a number z~' such
that zz™' = 1. This multiplicative inverse is less obvious than the additive one. To find
it, we seek real numbers u and v, expressed in terms of x and y, such that

(x, ) (u,v) = (1,0).

According to equation (5), Sec. 1, which defines the product of two complex numbers,
u and v must satisfy the pair

xu —yv =1, yu+ xv=20
of linear simultaneous equations; and simple computation yields the unique solution

X -y

u = . v g
X2+y2 x2+y2

The multiplicative inverse of z = (x, y) is, then,
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x -y
8 S S— ) (z % 0).
(8) <xz+y* X+
The existence of multiplicative inverses enables us to show that if a product z,z,
is zero, then so is at least one of the factors z, and z,. For suppose that z,z, = 0 and
z; # 0. The inverse z;' exists; and, according to the definition of multiplication, any
complex number times zero is zero. Hence

9) =12z = (zf'zl)zz = 21—1(2122) =z'-0=0.

That is, if z,z, = 0, either z; = 0 or z;, = 0; or possibly both z, and z, equal zero.
Another way to state this result is that if two complex numbers z, and z, are nonzero,
then so is their product z,z,.

Division by a nonzero complex number is defined:

(10) i 2,25 (z; # 0).
)
If z; = (x;,y) and z; = (x3,¥,), equations (8) and (10) show that

(11 2 _ <x1x2 Ty Yy — xl}’2> _ (x;xz + )’1)’2> + i()’lxz - xl)’z)
2 G+ T B4y X+ 3 G+ ¥

(Zz +* 0)

The quotient z,/z, is not defined when z, = 0; note that z, = 0 means that x + yi =0,
and this is not permitted in expressions (11).

Finally, we mention some useful identities involving quotients. They are based on
the relation

1

Z

(12) = ZZ_I (22 # 0)7

which is equation (10) when z; = 1 and which allows us to write that equation in
the form

1
(13) 4o z1<—> (2 # 0).
2 Zp
Noticing that (see Exercise 11)
(2122) (z7'22") = (21z7") (z272") = 1 (21 # 0, 2, # 0),
and hence that (z,2)"' = z7'z;', one can use relation (12) to verify the identity
1 1 1
(14) — = <—> (—) (zy # 0, z, # 0).
Z)\2y Z) Zy

With the aid of equations (13) and (14), it is then easy to show that

+
(15) ATRHLE ﬂz(ﬂ)@) (3 # 0, z, # 0).

Z3 Z3 Z3 2324 Z3) \Z4
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Example. Computations such as the following are now justified:
I 1y 1 _<1><5+i)_5+i:i+Li
(2—3i><1+i>_5—i— S—i)\5+i 26 26 26

EXERCISES

1. Verify that
(@) (V2 = i) = i(1 = V2i) = =2i; (b) (2,-3)(=2,1) = (—1,8);

© .06~ (555) =@ @ EA 22,
O ENG-og) =@ @3+ 5°
5 1
== 1 —i)=—4,
O i he-ne-p_z' Na-0
2. Verify that each of the two numbers z = | * | satisfies the equation 2> — 2z + 2 = 0.

3. Solve the equation 22 + z + | = 0 forz = (x,y) by writing
(6, y) (x,y) + (x,y) + (1,0) = (0,0)

and then solving a pair of simultaneous equations in x and y.
Suggestion: Note that y # 0 since no real number x satisfies the equation

X+x+1=0.

Prove that multiplication is commutative, as stated in the second of equations (1), Sec. 2.
Verify the associative laws (2), Sec. 2.

Verify the distributive law (3), Sec. 2.

Apply laws established in Exercises 5 and 6 to show that

el R

2(z) + 2o + z3) = 2z, + zz5 + 224

o

Show that the complex number 1 = (1, 0) is the only multiplicative identity.
9. Showthat —z = (—x, —y) is the only additive inverse of a given complex number z = (x, y).
10. Prove that

(a) Im(iz)
d) (=1)z

11. Use the associative and commutative laws for multiplication to show that

Il

Re z; (b) Re(iz) = =Imz; (c) 1/(1/2) =z (z # 0);

—Zs

Il

(lez) (z324) = (z123) (z224).
12. Prove that if z,z,z; = 0, then at least one of the three factors is zero.
13. Verify identity (14), Sec. 2.
14. Establish the first of identities (15), Sec. 2.
15. Establish the second of identities (15), Sec. 2, and use it to prove the cancellation law
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i _ B (z# 0,z # 0).

ZZy 2y

16. Show that (1 + z)* =1 + 2z + Z*

17. Use mathematical induction to establish the binomial formula
nn — 1)
2!
+n(n - Dn—-2)yn—k+1)

k!

where z, and z, are any two complex numbers and n is a positive integer (n = 1,2,...).

noo_ .
(z; + z)" = 2} +Fz’|' Iz + TR 4

—k_k
B+ + 4,

3. Geometric Interpretation

It is natural to associate the complex number z = x + iy with a point in the plane
whose cartesian coordinates are x and y. Each complex number corresponds to just
one point, and conversely. The number —2 + i, for instance, is represented by
the point (=2, 1) in Fig. 1. The number z can also be thought of as the directed line

-2,1)

= g x,»)

X Figure 1

segment, or vector, from the origin to the point (x,y). In fact, we often refer to a
complex number z as the point z or the vector z. When used for the purpose of
displaying the numbers z = x + iy geometrically, the xy plane is called the complex
plane, or the z plane. The x axis is called the real axis, and the y axis is known as
the imaginary axis.

According to the definition of the sum of two complex numbers z, = x;, + iy, and
Z; = X3 T iy,, the number z; + z, corresponds to the point (x; + x,, v + y2). It also
corresponds to a vector with those coordinates as its components. Hence z, + z, may
be obtained vectorlally as shown in Fig. 2. The difference z, — z, = z, + (—2z,y)
corresponds to the sum of the vectors for z; and —z, (Fig. 3). Note that the number
7y — 2 can also be interpreted as the directed line segment from the point (x;, ¥,) to the

point (x;,y).

Figure 2 Figure 3
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Although the product of two complex numbers z, and z, is itself a complex number
represented by a vector, that vector lies in the same plane as the vectors for z; and z,.
Evidently, then, this product is neither the scalar nor the vector product used in ordinary
vector analysis. The geometric interpretation of the product of z, and z, is discussed in
Sec. 5.

The modulus, or absolute value, of a complex number z = x + iy is defined as
the nonnegative real number Vx> + y* and is denoted by |z|; that is,

(1 o =V + 52,

Geometrically, the number |z| is the distance between the point (x, y) and the origin, or
the length of the vector representing z. It reduces to the usual absolute value in the real
number system when y = 0. Note that while the inequality z, < z, is meaningless
unless both z, and z, are real, the statement |z,| < |z,| means that the point z, is closer
to the origin than the point z, is.

Example 1. Since |3 + 2i| = VI3 and |1 + 4i| = V17, the point —3 + 2i is
closer to the origin than 1 + 4i is.

The distance between two points z, = x, + iy, and z, = x, + iy, is |z; — z,|. This
is clear from Fig. 3, since |z; — z,| is the length of the vector representing z, — z,.
Alternatively, it follows from definition (1) and the expression

1 —zn=(x —x)+ i(y, — y2)
that

|Zl - 22| = \/(Xl - x) + o = }’2)2-

The complex numbers z corresponding to the points lying on the circle with center
zo and radius R thus satisfy the equation |z — z| = R, and conversely. We refer to this
set of points simply as the circle |z — zo| = R.

Example 2. The equation [z — 1 + 3i| = 2 represents the circle whose center is
zp = (1, —3) and whose radius is R = 2.

It also follows from definition (1) that the real numbers ]zl, Re z = x, and
Im z = y are related by the equation

(2) Iz = (Re z)* + (Im z)?,
as well as the inequalities
(3) lz| = [Re z| = Re 2, |zl Z [Im z| = Im z.

The complex conjugate, or simply the conjugate, of a complex number z = x + iy
is defined as the complex number x — iy and is denoted by z; that is,

(4) z=1x—iy.



8 COMPLEX VARIABLES AND APPLICATIONS SEC. 3

(x,»)

Ny

(x,—y)

Figure 4

The number Z is represented by the point (x, —y), which is the reflection in the real axis
of the point (x, y) representing z (Fig. 4). Note that z = z and [z| = || for all z.
If 2 = X + ly| and Z; = Xy + iyz, then

7y 2= (0 +x) - i(y, + y2) = (x — iy)) + (x; — iys).

So the conjugate of the sum is the sum of the conjugates:

(5) z) + Zy = E] 2 Ez.

In like manner, it is easy to show that

(6) Zy T I = E1 - zz,

(7) 212; = 212,

(8) (ﬂ) =4 (2, # 0).
Z> Z)

The sum z + z of a complex number z = x + iy and its conjugate z = x — iy is

the real number 2x, and the difference z — Z is the pure imaginary number 2iy. Hence
we have the identities

z+z z—2z
R = 1 = .
(9) ez 5 m z 3

An important identity relating the conjugate of a complex number z = x + iy to
its modulus is

(10) zz = |z,
where each side is equal to x> + y”. It provides another way of determining the quotient

z/z, in expressions (11), Sec. 2. The procedure is to multiply both numerator and
denominator by z, so that the denominator becomes the real number |25

Example 3. As an illustration,

~1+3i _(1+3)0Q+9) _-5+5i _-S+5_

= = s 1+ i
7= ¢ 2 -2+ 2= 5 :

Also, see the example at the end of Sec. 2.



